scholarly journals TiVZrNb Multi-Principal-Element Alloy: Synthesis Optimization, Structural, and Hydrogen Sorption Properties

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2799 ◽  
Author(s):  
Jorge Montero ◽  
Claudia Zlotea ◽  
Gustav Ek ◽  
Jean-Claude Crivello ◽  
Lætitia Laversenne ◽  
...  

While the overwhelming number of papers on multi-principal-element alloys (MPEAs) focus on the mechanical and microstructural properties, there has been growing interest in these alloys as solid-state hydrogen stores. We report here the synthesis optimization, the physicochemical and the hydrogen sorption properties of Ti0.325V0.275Zr0.125Nb0.275. This alloy was prepared by two methods, high temperature arc melting and ball milling under Ar, and crystallizes into a single-phase bcc structure. This MPEA shows a single transition from the initial bcc phase to a final bct dihydride and a maximum uptake of 1.7 H/M (2.5 wt%). Interestingly, the bct dihydride phase can be directly obtained by reactive ball milling under hydrogen pressure. The hydrogen desorption properties of the hydrides obtained by hydrogenation of the alloy prepared by arc melting or ball milling and by reactive ball milling have been compared. The best hydrogen sorption properties are shown by the material prepared by reactive ball milling. Despite a fading of the capacity for the first cycles, the reversible capacity of the latter material stabilizes around 2 wt%. To complement the experimental approach, a theoretical investigation combining a random distribution technique and first principle calculation was done to estimate the stability of the hydride.

2011 ◽  
Vol 311-313 ◽  
pp. 1351-1356
Author(s):  
Li Juan Pang ◽  
Yun Gui Chen ◽  
Chao Ling Wu ◽  
Xue Feng Zhang ◽  
Gang Deng

Mg17Al12and rare earth improved Mg17Al12La0.45alloys were prepared by resistance melting method. The hydrogen sorption properties of the alloys with and without ball-milling process were investigated with the help of PCT measurements. The phase compositions of the experimental alloys were determined through powder X-Ray diffraction. It is found that the introduction of La and the high energy ball-milling technique could remarkably improve the hydrogen sorption capability of Mg17Al12. For Mg17Al12La0.45alloy, the hydrogen absorption starts at 473K and the hydridying rate increases at each temperature (573K, 523K, 473K) after high energy ball-milling process. The hydrogen desorption capacity of this alloy is 4wt% at 573K. XRD shows that there are two phases Mg17Al12and Al2La0.15Mg0.85after melting and Al2La0.15Mg0.85phase always exists during hydrogen sorption cycles of Mg17Al12La0.45.


2022 ◽  
Vol 8 ◽  
Author(s):  
Amol Kamble ◽  
Pratibha Sharma ◽  
Jacques Huot

The addition of 4 wt% Zr to Ti52V12Cr36 alloy was carried out in two different ways: arc-melting or ball-milling. The cast alloy showed rapid hydrogen absorption up to 3.6 wt% of hydrogen capacity within 15 min. Ball milling this sample worsened the kinetics, and no hydrogen absorption was registered when milling was carried out for 30 or 60 min. When zirconium is added by ball-milling, the kinetic is slower than that when addition is by arc-melting. This is due to the fact that when added by milling, zirconium does not form a ternary phase with Ti, V, and Cr but instead is just dispersed on the particles’ surface.


2020 ◽  
Vol 21 (1) ◽  
pp. 167-175
Author(s):  
O. G. Ershova ◽  
V. D. Dobrovolsky ◽  
Yu. M. Solonin

The mechanical alloys-composite MАs (Mg +10 % wt.Ti + 5 % wt.Y and Mg +10 % wt.Ni + 5 % wt.Y) were synthesized. The phase content, microstructure, the thermal stability, kinetics of hydrogen desorption from the MgH2 hydride phase of the obtained MAs were studiedby using XRD, SEM, TDS methods. It has been established that the addition of Ti + Y and Ni + Y to magnesium leads to significant improvement in the kinetics of hydrogen desorption from the  MgH2 hydride phase, which is evidenced by a significant reduction (in 6 and 15 times)in the time of release of all hydrogen from MA1 and MA2, respectively. Due to, Ti, Ni,Y alloying, the decrease in the thermodynamic stability of MgH2 is not found.


Reactions ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 287-300
Author(s):  
Salma Sleiman ◽  
Maria Moussa ◽  
Jacques Huot

The hydrogen storage properties of a multi-component alloy of composition Ti0.3V0.3Mn0.2Fe0.1Ni0.1 were investigated. The alloy was synthesized by arc melting and mechanical alloying, resulting in different microstructures. It was found that the as-cast alloy is multiphase, with a main C14 Laves phase matrix along with a BCC phase and a small amount of Ti2Fe-type phase. The maximum hydrogen storage capacity of the alloy was 1.6 wt.%. We found that the air-exposed samples had the same capacity as the as-cast sample but with a longer incubation time. Synthesis by mechanical alloying for five hours resulted in an alloy with only BCC structure. The hydrogen capacity of the milled alloy was 1.2 wt.%, lower than the as-cast one. The effect of ball milling of the as-cast alloy was also studied. Ball milling for five hours produced a BCC structure similar to the one obtained by milling the raw materials for the same time.


2006 ◽  
Vol 16 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Je-Shin Park ◽  
Chang-Youl Suh ◽  
Gun-Choo Shim ◽  
Won-Baek Kim

2004 ◽  
Vol 99-100 ◽  
pp. 137-142
Author(s):  
J. Bystrzycki ◽  
T. Czujko ◽  
R.A. Varin ◽  
Jaroslaw Mizera

The paper presents the results of studies of the hydrogen sorption properties of nanocrystalline Mg2Ni intermetallic prepared by mechanical (ball) milling under controlled shearing/impact mode. The pre-alloyed intermetallic powders were subjected to ball milling under various controlled milling conditions such as shearing, high-energy shearing and impact in a magnetic Uni-Ball-Mill 5. The hydriding properties were evaluated by monitoring the absorption PC isotherms by the conventional constant-volume method using Sieverts semi-automatic apparatus. Changes of structure during processing and hydriding properties of nanostructured Mg2Ni intermetallic powders are shown and discussed.


2010 ◽  
Vol 667-669 ◽  
pp. 1053-1058 ◽  
Author(s):  
Gisele Ferreira De Lima ◽  
Daniel Rodrigo Leiva ◽  
Tomaz Toshimi Ishikawa ◽  
Claudemiro Bolfarini ◽  
Claudio Shyinti Kiminami ◽  
...  

In the present work, we have processed 2Mg-Fe mixtures by reactive milling (RM) under hydrogen atmosphere to synthesize Mg2FeH6 phase in the powder form which were then systematically processed by High Pressure Torsion (HPT) to produce bulk samples. The bulk samples were characterized in terms of microstructural and structural analyses and of hydrogen desorption properties. The hydrogen sorption properties after HPT processing was evaluated in comparison with the Mg2FeH6 powder obtained by RM and with commercial MgH2. HPT processing of Mg2FeH6 can produce bulks with a high density of defects that drastically lower the activation barrier for hydrogen desorption. Therefore, the bulk nanocrystalline Mg2FeH6 samples show endothermic hydrogen decomposition peak at a temperature around 320°C. In addition, when compared with the Mg2FeH6 and MgH2 powders, the Mg2FeH6 HPT disks showed the same results presented by the Mg2FeH6 powders and certainly decreases the onset transition temperature by as much as 160°C when compared with the MgH2 powders.


Sign in / Sign up

Export Citation Format

Share Document