scholarly journals AC Electrodeposition of PEDOT Films in Protic Ionic Liquids for Long-Term Stable Organic Electrochemical Transistors

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4105
Author(s):  
Jianlong Ji ◽  
Xiaoxian Zhu ◽  
Dan Han ◽  
Mangmang Li ◽  
Qiang Zhang ◽  
...  

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)-based organic electrochemical transistors (OECTs) are widely utilized to construct highly sensitive biosensors. However, the PSS phase exhibits insulation, weak acidity, and aqueous instability. In this work, we fabricated PEDOT OECT by alternating current electrodeposition in protic ionic liquids. The steady-state characteristics were demonstrated to be stable in long-term tests. In detail, the maximum transconductance, the on/off current ratio, and the hysteresis were stable at 2.79 mS, 504, and 0.12 V, respectively. Though the transient behavior was also stable, the time constant could reach 218.6 ms. Thus, the trade-off between switching speed and stability needs to be considered in applications that require a rapid response.

Author(s):  
Owen Sullivan ◽  
Borislav Alexandrov ◽  
Saibal Mukhopadhyay ◽  
Satish Kumar

Hot spots on a microelectronic package can severely hurt the performance and long-term reliability of the chip. Thermoelectric coolers (TECs) have been shown to potentially provide efficient site-specific on-demand cooling of hot spots in microprocessors. TECs could lengthen the amount of time a processor is capable of running at full speed in the short-term and also provide long-term reliability by creating a more uniform temperature distribution across the chip. We have created a compact model for fast and accurate modeling of the TEC device integrated inside an electronic package. A 1-D compact model for TEC is first built in SPICE and has been validated for steady-state and transient behavior against a finite-volume model. The 1-D model of TEC was then incorporated into compact model of a prototype electronic package and simulations were performed to validate its steady state and transient behavior. This integrated compact model’s results are in good agreement with a finite volume based model developed for TECs integrated inside a package and confirmed the compact model’s ability to accurately model the TEC’s interaction with package. The compact model has relatively small error when compared to the finite-volume based model and obtains results in a fraction of the time, reducing run-time in a transient simulation by 430%. A simple controller was added to the electronic package and TEC model to provide an initial test of how the compact model can aid design of more complex control systems to efficiently operate the thermoelectric coolers.


2017 ◽  
Vol 53 (78) ◽  
pp. 10761-10764 ◽  
Author(s):  
Stella Schmode ◽  
Ralf Ludwig

We developed a procedure to use the highly sensitive dyeN-methyl-6-oxyquinolone as an acidity probe in molecular solvents and protic ionic liquids.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


2021 ◽  
Vol 125 (5) ◽  
pp. 1416-1428
Author(s):  
Jing Ma ◽  
Yutong Wang ◽  
Xueqing Yang ◽  
Mingxuan Zhu ◽  
Baohe Wang

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4158
Author(s):  
Patrycja Glińska ◽  
Andrzej Wolan ◽  
Wojciech Kujawski ◽  
Edyta Rynkowska ◽  
Joanna Kujawa

There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.


2021 ◽  
pp. 113036
Author(s):  
Emanuel A. Crespo ◽  
Liliana P. Silva ◽  
Cristina I.P. Correia ◽  
Mónia A.R. Martins ◽  
Ramesh L. Gardas ◽  
...  

2021 ◽  
Vol 23 (4) ◽  
pp. 2663-2675
Author(s):  
Viviane Overbeck ◽  
Henning Schröder ◽  
Anne-Marie Bonsa ◽  
Klaus Neymeyr ◽  
Ralf Ludwig

NMR Fast-Field-Cycling (FFC) relaxometry provides important information about translational and rotational dynamics of hydrogen bonded protic ionic liquids (PILs). 


Sign in / Sign up

Export Citation Format

Share Document