scholarly journals Simultaneously Quantitative Analysis of Naringin and Its Major Human Gut Microbial Metabolites Naringenin and 3-(4′-Hydroxyphenyl) Propanoic Acid via Stable Isotope Deuterium-Labeling Coupled with RRLC-MS/MS Method

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4287 ◽  
Author(s):  
Taobin Chen ◽  
Hao Wu ◽  
Yan He ◽  
Wenjun Pan ◽  
Zenghao Yan ◽  
...  

Widespread in citrus fruits, naringin, a natural 2,3-dihydroflavonoid, is of particular interest to scientists and has a broad range of beneficial bioactivities to health. Orally administered naringin remains in the gut tract for a relatively long time because of its low bioavailability. Under the metabolism mediated by human gut microbiota, naringin could be an active precursor for derived metabolites to play important physiological roles. However, naringin and its metabolites are hard to accurately quantify due to severe endogenic interference. In this study, an analytical rapid resolution liquid chromatography tandem mass spectrometry (RRLC-MS/MS) method coupled with stable isotope deuterium-labeling is developed and validated to simultaneously quantify naringin as well as its major human gut microbial metabolites naringenin and 3-(4′-hydroxyphenyl) propanoic acid. By eliminating the matrix interferences, this strategy not only confirms naringenin and 3-(4′-hydroxyphenyl) propanoic acid as the predominant metabolites which contribute to the pharmacological effects of naringin but also provides a suitable choice for other flavonoid pharmacokinetics study.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4357
Author(s):  
Waritda Pookmanee ◽  
Siriwan Thongthip ◽  
Jeeranut Tankanitlert ◽  
Mathirut Mungthin ◽  
Chonlaphat Sukasem ◽  
...  

The method for the determination of primaquine (PQ) and 5,6-orthoquinone primaquine (5,6-PQ), the representative marker for PQ active metabolites, via CYP2D6 in human plasma and urine has been validated. All samples were extracted using acetonitrile for protein precipitation and analyzed using the ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) system. Chromatography separation was carried out using a Hypersil GOLDTM aQ C18 column (100 × 2.1 mm, particle size 1.9 μm) with a C18 guard column (4 × 3 mm) flowed with an isocratic mode of methanol, water, and acetonitrile in an optimal ratio at 0.4 mL/min. The retention times of 5,6-PQ and PQ in plasma and urine were 0.8 and 1.6 min, respectively. The method was validated according to the guideline. The linearity of the analytes was in the range of 25–1500 ng/mL. The matrix effect of PQ and 5,6-PQ ranged from 100% to 116% and from 87% to 104% for plasma, and from 87% to 89% and from 86% to 87% for urine, respectively. The recovery of PQ and 5,6-PQ ranged from 78% to 95% and form 80% to 98% for plasma, and from 102% to from 112% to 97% to 109% for urine, respectively. The accuracy and precision of PQ and 5,6-PQ in plasma and urine were within the acceptance criteria. The samples should be kept in the freezer (−80 °C) and analyzed within 7 days due to the metabolite stability. This validated UHPLC-MS/MS method was beneficial for a pharmacokinetic study in subjects receiving PQ.


Author(s):  
Maria Rincon Nigro ◽  
Jing Ma ◽  
Ololade Tosin Awosemo ◽  
Huan Xie ◽  
Omonike Arike Olaleye ◽  
...  

OJT007 is a methionine aminopeptidase 1 (MetAP1) inhibitor with potent anti-proliferative effects against Leishmania Major. In order to study its pharmacokinetics as a part of the drug development process, a sensitive, specific, and reproducible ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated. Voriconazole was used as the internal standard to generate standard curves ranging from 5 to 1000 ng/mL. The separation was achieved using a UPLC system equipped with an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) with 0.1% formic acid in acetonitrile and 0.1% formic acid in water as the mobile phase under gradient elution at a flow rate of 0.4 mL/min. The mass analysis was performed with a 4000 QTRAP® mass spectrometer using multiple-ion reaction monitoring (MRM) in the positive mode, with the transition of m/z 325 → m/z 205 for OJT007 and m/z 350 → m/z 101 for voriconazole. The intra- and inter-day precision and accuracy were within ±15%. The mean extraction recovery and the matrix effect were 95.1% and 7.96%, respectively, suggesting no significant matrix interfering with the quantification of the drug in rat plasma. This study was successfully used for the pharmacokinetic evaluation of OJT007 using the rat as an animal model.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Haiyan Lei ◽  
Jianbo Guo ◽  
Zhuo Lv ◽  
Xiaohong Zhu ◽  
Xiaofeng Xue ◽  
...  

This study reports an analytical method for the determination of nitroimidazole and quinolones in honey using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A modified QuEChERS methodology was used to extract the analytes and determine veterinary drugs in honey by LC-MS/MS. The linear regression was excellent at the concentration levels of 1–100 ng/mL in the solution standard curve and the matrix standard curve. The recovery rates of nitroimidazole and quinolones were 4.4% to 59.1% and 9.8% to 46.2% with relative standard deviations (RSDs) below 5.2% and the recovery rates of nitroimidazole and quinolones by the matrix standard curve ranged from 82.0% to 117.8% and 79% to 115.9% with relative standard deviations (RSDs) lower than 6.3% in acacia and jujube honey. The acacia and jujube honeys have stronger matrix inhibition effect to nitroimidazole and quinolones residue; the matrix inhibition effect of jujube honey is stronger than acacia honey. The matrix standard curve can calibrate matrix effect effectively. In this study, the detection method of antibiotics in honey can be applied to the actual sample. The results demonstrated that the modified QuEChERS method combined with LC-MS/MS is a rapid, high, sensitive method for the analysis of nitroimidazoles and quinolones residues in honey.


Author(s):  
Fabiane M. Stringhini ◽  
Lucila C. Ribeiro ◽  
Graziela I. Rocha ◽  
Juliana D. de B. Kuntz ◽  
Renato Zanella ◽  
...  

AbstractTomato is well-known to be one of the most cultivated and consumed vegetables worldwide and frequently contain pesticide residues. Therefore, a simple multiresidue method was established and validated to determine 129 pesticides and metabolites in tomato samples using a modified acetate QuEChERS without cleanup for sample preparation and determination by ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Dilution of the raw extract in different proportions of mobile phase was evaluated and a dilution of 10 times presented adequate results improving analysis performance while minimizing the matrix effect. Validation performed according to SANTE guideline presented satisfactory results. Practical method limit of quantification was 0.01 mg kg−1 for most compounds. Recoveries between 70 and 120% with precision ≤ 20% were found for most compounds and spike levels evaluated. Matrix effect results were not significant for most part of compounds. Method proved to be simple, robust, and effective to be applied in routine analysis. Method applicability was performed by analysis of samples commercialized in Brazil and positive results were found demonstrating the importance of the proposed method.


2017 ◽  
Vol 9 (21) ◽  
pp. 3134-3140 ◽  
Author(s):  
Atsushi Ishizaki ◽  
Akiko Uemura ◽  
Hiroyuki Kataoka

Melatonin (MLT) plays important roles in regulating the sleep-wake cycle, and has many beneficial effects on health. A simple, rapid, and sensitive method was developed for the determination of MLT in human saliva by automated online in-tube solid-phase microextraction coupled with stable isotope-dilution liquid chromatography-tandem mass spectrometry.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1837
Author(s):  
Harischandra Naik Rathod ◽  
Bheemanna Mallappa ◽  
Pallavi Malenahalli Sidramappa ◽  
Chandra Sekhara Reddy Vennapusa ◽  
Pavankumar Kamin ◽  
...  

A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.


Sign in / Sign up

Export Citation Format

Share Document