scholarly journals New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 705
Author(s):  
Hisae Tateishi-Karimata ◽  
Tatsuya Ohyama ◽  
Takahiro Muraoka ◽  
Shigenori Tanaka ◽  
Kazushi Kinbara ◽  
...  

Methods for stabilizing G-quadruplex formation is a promising therapeutic approach for cancer treatment and other biomedical applications because stable G-quadruplexes efficiently inhibit biological reactions. Oligo and polyethylene glycols are promising biocompatible compounds, and we have shown that linear oligoethylene glycols can stabilize G-quadruplexes. Here, we developed a new modified deoxythymine with dibranched or tribranched tetraethylene glycol (TEG) and incorporated these TEG-modified deoxythymines into a loop region that forms an antiparallel G-quadruplex. We analyzed the stability of the modified G-quadruplexes, and the results showed that the tribranched TEG destabilized G-quadruplexes through entropic contributions, likely through steric hindrance. Interestingly, the dibranched TEG modification increased G-quadruplex stability relative to the unmodified DNA structures due to favorable enthalpic contributions. Molecular dynamics calculations suggested that dibranched TEG interacts with the G-quadruplex through hydrogen bonding and CH-π interactions. Moreover, these branched TEG-modified deoxythymine protected the DNA oligonucleotides from degradation by various nucleases in human serum. By taking advantage of the unique interactions between DNA and branched TEG, advanced DNA materials can be developed that affect the regulation of DNA structure.

2017 ◽  
Vol 114 (36) ◽  
pp. 9605-9610 ◽  
Author(s):  
Shuntaro Takahashi ◽  
John A. Brazier ◽  
Naoki Sugimoto

Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.


2020 ◽  
Vol 117 (38) ◽  
pp. 23982-23990 ◽  
Author(s):  
Shengjun Li ◽  
Mu Li ◽  
Kan Liu ◽  
Huimin Zhang ◽  
Shuxin Zhang ◽  
...  

MAC5 is a component of the conserved MOS4-associated complex. It plays critical roles in development and immunity. Here we report that MAC5 is required for microRNA (miRNA) biogenesis. MAC5 interacts with Serrate (SE), which is a core component of the microprocessor that processes primary miRNA transcripts (pri-miRNAs) into miRNAs and binds the stem-loop region of pri-miRNAs. MAC5 is essential for both the efficient processing and the stability of pri-miRNAs. Interestingly, the reduction of pri-miRNA levels inmac5is partially caused by XRN2/XRN3, the nuclear-localized 5′-to-3′ exoribonucleases, and depends on SE. These results reveal that MAC5 plays a dual role in promoting pri-miRNA processing and stability through its interaction with SE and/or pri-miRNAs. This study also uncovers that pri-miRNAs need to be protected from nuclear RNA decay machinery, which is connected to the microprocessor.


2021 ◽  
Author(s):  
Anirban Ghosh ◽  
Eric Largy ◽  
Valérie Gabelica

Abstract G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).


2020 ◽  
Vol 48 (3) ◽  
pp. 1108-1119 ◽  
Author(s):  
Rajendra Kumar ◽  
Karam Chand ◽  
Sudipta Bhowmik ◽  
Rabindra Nath Das ◽  
Snehasish Bhattacharjee ◽  
...  

Abstract G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.


Author(s):  
Saikat Pal ◽  
Sandip Paul

The stability of c-KIT G-quadruplex DNA by ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind...


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Erika Demkovičová ◽  
Ľuboš Bauer ◽  
Petra Krafčíková ◽  
Katarína Tlučková ◽  
Petra Tóthova ◽  
...  

The human telomeric and protozoal telomeric sequences differ only in one purine base in their repeats; TTAGGG in telomeric sequences; and TTGGGG in protozoal sequences. In this study, the relationship between G-quadruplexes formed from these repeats and their derivatives is analyzed and compared. The human telomeric DNA sequence G3(T2AG3)3 and related sequences in which each adenine base has been systematically replaced by a guanine were investigated; the result is Tetrahymena repeats. The substitution does not affect the formation of G-quadruplexes but may cause differences in topology. The results also show that the stability of the substituted derivatives increased in sequences with greater number of substitutions. In addition, most of the sequences containing imperfections in repeats which were analyzed in this study also occur in human and Tetrahymena genomes. Generally, the presence of G-quadruplex structures in any organism is a source of limitations during the life cycle. Therefore, a fuller understanding of the influence of base substitution on the structural variability of G-quadruplexes would be of considerable scientific value.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Ruby A Escobedo ◽  
Kimberly J Long ◽  
Dominic N McBrayer ◽  
Michelle Schoonover ◽  
Sean M Kerwin

2021 ◽  
Author(s):  
Subramaniyam Ravichandran ◽  
Maria Razzaq ◽  
Nazia Parveen ◽  
Ambarnil Ghosh ◽  
Kyeong Kyu Kim

Abstract G-quadruplex (G4), a four-stranded DNA or RNA structure containing stacks of guanine tetrads, plays regulatory roles in many cellular functions. So far, conventional G4s containing loops of 1–7 nucleotides have been widely studied. Increasing experimental evidence suggests that unconventional G4s, such as G4s containing long loops (long-loop G4s), play a regulatory role in the genome by forming a stable structure. Other secondary structures such as hairpins in the loop might thus contribute to the stability of long-loop G4s. Therefore, investigation of the effect of the hairpin-loops on the structure and function of G4s is required. In this study, we performed a systematic biochemical investigation of model G4s containing long loops with various sizes and structures. We found that the long-loop G4s are less stable than conventional G4s, but their stability increased when the loop forms a hairpin (hairpin-G4). We also verified the biological significance of hairpin-G4s by showing that hairpin-G4s present in the genome also form stable G4s and regulate gene expression as confirmed by in cellulo reporter assays. This study contributes to expanding the scope and diversity of G4s, thus facilitating future studies on the role of G4s in the human genome.


Sign in / Sign up

Export Citation Format

Share Document