scholarly journals Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 996 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Azirwan Guswanto ◽  
Arifin Nugraha ◽  
Tserendorj Munkhjargal ◽  
...  

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 550 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Oluyomi Stephen Adeyemi ◽  
Eman Hassan Nadwa ◽  
Eman kadry Mohamed Rashwan ◽  
...  

Berberis vulgaris (B. vulgaris) and Rhus coriaria (R. coriaria) have been documented to have various pharmacologic activities. The current study assessed the in vitro as well as in vivo inhibitory efficacy of a methanolic extract of B. vulgaris (MEBV) and an acetone extract of R. coriaria (AERC) on six species of piroplasm parasites. The drug-exposure viability assay was tested on three different cell lines, namely mouse embryonic fibroblast (NIH/3T3), Madin-Darby bovine kidney (MDBK) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that both extracts containing alkaloid, tannin, saponins and terpenoids and significant amounts of flavonoids and polyphenols. The GC-MS analysis of MEBV and AERC revealed the existence of 27 and 20 phytochemical compounds, respectively. MEBV and AERC restricted the multiplication of Babesia (B.) bovis, B. bigemina, B. divergens, B. caballi, and Theileria (T.) equi at the half-maximal inhibitory concentration (IC50) of 0.84 ± 0.2, 0.81 ± 0.3, 4.1 ± 0.9, 0.35 ± 0.1 and 0.68 ± 0.1 µg/mL and 85.7 ± 3.1, 60 ± 8.5, 90 ± 3.7, 85.7 ± 2.1 and 78 ± 2.1 µg/mL, respectively. In the cytotoxicity assay, MEBV and AERC inhibited MDBK, NIH/3T3 and HFF cells with half-maximal effective concentrations (EC50) of 695.7 ± 24.9, 931 ± 44.9, >1500 µg/mL and 737.7 ± 17.4, >1500 and >1500 µg/mL, respectively. The experiments in mice showed that MEBV and AERC prohibited B. microti multiplication at 150 mg/kg by 66.7% and 70%, respectively. These results indicate the prospects of these extracts as drug candidates for piroplasmosis treatment following additional studies in some clinical cases.


Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 127 ◽  
Author(s):  
Amany Magdy Beshbishy ◽  
Gaber El-Saber Batiha ◽  
Luay Alkazmi ◽  
Eman Nadwa ◽  
Eman Rashwan ◽  
...  

Atranorin (ATR), is a compound with multidirectional biological activity under different in vitro and in vivo conditions and it is effective as an antibacterial, antiviral, antiprotozoal and anti-inflammatory agent. In the current study, the in vitro as well as in vivo chemotherapeutic effect of ATR as well as its combined efficacy with the existing antibabesial drugs (diminazene aceturate (DA), atovaquone (AV) and clofazimine (CF)) were investigated on six species of piroplasm parasites. ATR suppressed B. bovis, B. bigemina, B. divergens, B. caballi and T. equi multiplication in vitro with IC50 values of 98.4 ± 4.2, 64.5 ± 3.9, 45.2 ± 5.9, 46.6 ± 2.5, and 71.3 ± 2.7 µM, respectively. The CCK test was used to examine ATR’s cytotoxicity and adverse effects on different animal and human cell lines, the main hosts of piroplasm parasites and it showed that ATR affected human foreskin fibroblasts (HFF), mouse embryonic fibroblast (NIH/3T3) and Madin-Darby Bovine Kidney (MDBK) cell viability in a dose-related effect with a moderate selective index. The combined efficacy of ATR with DA, CF, and AV exhibited a synergistic and additive efficacy toward all tested species. In the in vivo experiment, ATR prohibited B. microti multiplication in mice by 68.17%. The ATR-DA and ATR-AV combination chemotherapies were more potent than ATR monotherapy. These results indicate the prospects of ATR as a drug candidate for piroplasmosis treatment.


2019 ◽  
Author(s):  
Tahereh Ajam ◽  
Inessa De ◽  
Nikolai Petkau ◽  
Gabriela Whelan ◽  
Vladimir Pena ◽  
...  

AbstractCohesin is a protein complex encircles the DNA and regulates the separation of sister chromatids during cell division. Following a catalytic mechanism that is insufficiently understood, Esco1 and Esco2 acetyltransferases acetylate Smc3 subunit of cohesin, thereby inducing a stabilization of cohesin on DNA. As a prerequisite for structure-guided investigation of enzymatic activity, we determine here the crystal structure of the mouse Esco2/CoA complex at 1.8 Å resolution. We reconstitute the entire cohesin as a tetrameric assembly and use it as a physiologically-relevant substrate for enzymatic assays in vitro. Furthermore, we employ cell-based complementation studies in mouse embryonic fibroblast deficient for Esco1 and Esco2, as a means to identify catalytically-important residues in vivo. These analyses demonstrate that D567/S566 and E491/S527, located on opposite sides of the MmEsco2 active site cleft, are critical for catalysis. Our experiments supports a catalytic mechanism of acetylation where residues D567 and E491 are general bases that deprotonate the ε-amino group of lysine substrate, via two nearby serine residues - S566 and S527-that possess a proton relay function.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jian-Chih Chen ◽  
Jung-Chang Kung ◽  
Chih-Hsin Hsieh ◽  
Mei-Ju Hou ◽  
Chi-Jen Shih ◽  
...  

The main objective of this study is to characterize the thermal, mineralization, and osteoblast cells response of pearl nanocrystallites. The results obtained from X-ray diffraction, FTIR spectra demonstrate that the pearl nano-crystallites can induce the formation of an HA layer on their surface in SBF, even after only short soaking periods. The in vitro cell response to nano-grade pearl powders is assessed by evaluating the cytotoxicity against a mouse embryonic fibroblast cell line and by characterizing the attachment ability and alkaline phosphatase activity of mouse bone cells (MC3T3-E1, abbreviated to E1) and bone marrow stromal precursor (D1) cells. The cytotoxicities of pearls were tested by the filtration and culture of NIH-3T3 mouse embryonic fibroblast cells. The viability of the cultured cells in media containing pearl crystallites for 24 and 72 h is greater than 90%. The bone cells seen in these micrographs are elongated and align predominately along the pearl specimen. The cells observed in these images also appeared well attached and cover the surface almost completely after 1 h. The pearl nanocrystallites had a positive effect on the osteogenic ability of ALP activity, and this promoted the osteogenic differentiation of MSCs significantly at explanations.


Planta Medica ◽  
2020 ◽  
Vol 86 (10) ◽  
pp. 686-695 ◽  
Author(s):  
Xiuzhuang Lang ◽  
Xiangmei Zhang ◽  
Daoquan Wang ◽  
Weiqing Zhou

AbstractObacunone is one of the major bioactive constituents from Dictamni cortex, a traditional Chinese medicine widely used in China. Oral administration of obacunone or Dictamni cortex extract has been shown to cause liver injury in rats. Given that obacunone contains a furan ring, which is a structural alert, metabolic activation might be responsible for obacunone-induced liver injury. In this study, bioactivation pathways of obacunone in rat and human liver microsomes were investigated. Obacunone was first metabolized into cis-butene-1,4-dial, and then cis-butene-1,4-dial was captured by glutathione, N-acetyl-cysteine, and N-acetyl-lysine in the microsomal incubation system. A total of 13 adducts derived from the reaction of cis-butene-1,4-dial with glutathione and/or N-acetyl-lysine were detected and structurally identified by liquid chromatography coupled to high-resolution tandem mass spectrometry. The major metabolite (M7) was identified to be the cyclic mono-glutathione conjugate of cis-butene-1,4-dial, which was detected in bile and urine of obacunone-treated rats. M9 and M10, obacunone-derived glutathione-cis-butene-1,4-dial-NAL conjugates, were detected in the microsomal incubations of obacunone fortified with glutathione and N-acetyl-lysine as trapping agents. M3 and M4, pyrroline-2-one derivatives, were also detected in microsomal incubations. Further phenotyping studies indicated that ketoconazole showed a strong inhibitory effect on the production of cis-butene-1,4-dial in a concentration-dependent manner. CYP3A4 was demonstrated to be the primary enzyme responsible for the bioactivation of obacunone by using individual recombinant human CYP450 enzymes. The current study provides an overview of CYP450-dominated bioactivation of obacunone and contributes to the understanding of the role of bioactivation in obacunone-induced liver injury.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ying Liu ◽  
Wenjie Liu ◽  
Ziqiang Yu ◽  
Yan Zhang ◽  
Yinghua Li ◽  
...  

AbstractBromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


Sign in / Sign up

Export Citation Format

Share Document