scholarly journals Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1027
Author(s):  
Hazem S. Elshafie ◽  
Sadeek A. Sadeek ◽  
Ippolito Camele ◽  
Amira A. Mohamed

In the present work, tenoxicam (H2Ten) reacted with Mn(II), Co(II), Ni(II), Cu(II) and Zn (II) ions in the presence of 1.10-phenthroline (Phen), forming new mixed ligand metal complexes. The properties of the formed complexes were depicted by elemental analyses, infrared, electronic spectra, proton nuclear magnetic resonance (1H NMR), mass spectrometry, thermogravimetric (TGA) and differential thermogravimetric (DTG) analysis, molar conductance and magnetic moment. IR spectra demonstrated that H2Ten acted as a neutral bidentate ligand, coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety, and Phen through the nitrogen atoms. Kinetic thermodynamics parameters activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*), Gibbs, free energy (ΔG*) associated to the complexes have been evaluated. Antibacterial screening of the compounds was carried out in vitro against Clavibacter michiganensis, Xanthomonas campestris and Bacillus megaterium. Antifungal activity was performed in vitro against Monilinia fructicola, Penicillium digitatum and Colletotrichum acutatum. The possible phytotoxic effect of the studied compounds was also investigated on Solanum lycopersicum (tomatoes) and Lepidium sativum (garden cress) seeds. The anticancer activity was screened against cell cultures of HCT-116 (human colorectal carcinoma), HepG2 (human hepatocellular carcinoma) and MCF-7 (human breast adenocarcinoma).

Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 77 ◽  
Author(s):  
Hamad M. I. Hasan ◽  
Aaza I. Yahiya ◽  
Safaa S. Hassan ◽  
Mabrouk M. Salama

Adenine complexes were prepared with some of the first series transition metals in a stoichiometric ratio of 1: 2 (Mn+: L), where Mn+ = Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ ions. The Complexes were characterized by the physicochemical and spectroscopic techniques as electric conductivity, metal contents, IR, UV–Visible, and molar conductance techniques. The stoichiometric ratios of the synthesized complexes were confirmed by using molar ratio method. The dissociation constant of adenine ligand was determined spectrophotometrically. Solvent effect on the electronic spectra of the adenine ligand was examined using solvents with different polarities. The biological activity of adenine ligand and its metal complexes were tested in vitro against some selected species of fungi and bacteria. The results showed a satisfactory spectrum against the tested organisms.


2012 ◽  
Vol 77 (5) ◽  
pp. 627-637 ◽  
Author(s):  
Pal Singh ◽  
Nanda Srivastava

Mononuclear metal complexes of the type [ML1]Cl2 (where, M = = Cu(II), Co(II) or Ni(II) and L1 = ligand) were synthesized by the reaction of a new N4 coordinating ligand, derived from diacetylbisethylenediamine with benzoic acid, and the corresponding hydrated metal chloride salts. The metal complexes were characterized by elemental analysis, melting point determination, molar conductance and magnetic moment measurements, IR, UV-Vis, 1H- and 13C-NMR, and ESR spectroscopy. The ligand and all the metal complexes were stable in the solid state at room temperature. From the analytical and spectroscopic investigations, the stoichiometry of the complexes was found to be 1:1 (metal:ligand). Based on the electronic spectra and magnetic moment data, the metal complexes had a square planar geometry. The molar conductance values show the 1:2 electrolytic nature of the metal complexes. A cyclic voltammetric study of the Cu(II) metal complex has also performed, which showed one electron quasi-reversible reduction around -0.92 to -1.10 V. In vitro biological activities of the ligand and metal complexes was checked against two bacteria Bacillus subtilis and Escherichia coli and two fungi Aspirgillus niger and A. flavus which showed the antibacterial and antifungal properties of the ligand and its metal complexes.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Sulekh Chandra ◽  
Smriti Raizada ◽  
Monika Tyagi ◽  
Archana Gautam

A series of metal complexes of Cu(II) and Ni(II) having the general composition[M(L)X2]with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Narendra Kumar Chaudhary ◽  
Parashuram Mishra

A novel Schiff base ligand of type HL was prepared by the condensation of amoxicillin trihydrate and nicotinaldehyde. The metal complexes of Co+2, Ni+2, Cu+2, and Zn+2 were characterized and investigated by physical and spectral techniques, namely, elemental analysis, melting point, conductivity, 1H NMR, IR, UV-Vis spectra, ESR, SEM, and mass spectrometry measurements. They were further analyzed by thermal technique (TGA/DTA) to gain better insight about the thermal stability and kinetic properties of the complexes. Thermal data revealed high thermal stability and nonspontaneous nature of the decomposition steps. The Coats-Redfern method was applied to extract thermodynamic parameters to explain the kinetic behavior. The molar conductance values were relatively low, showing their nonelectrolytic nature. The powder XRD pattern revealed amorphous nature except copper complex (1c) that crystallized in the triclinic crystal system. The EPR study strongly recommends the tetrahedral geometry of 1c. The structure optimization by MM force field calculation through ArgusLab 4.0.1 software program supports the concerned geometry of the complexes. The in vitro antibacterial activity of all the compounds, at their two different concentrations, was screened against four bacterial pathogens, namely, E. coli, P. vulgaris, K. pneumoniae, and S. aureus, and showed better activity compared to parent drug and control drug.


2021 ◽  
Vol 33 (6) ◽  
pp. 1236-1244
Author(s):  
Manish Kumar ◽  
K.K. Verma ◽  
Sapana Garg

Six new hexa-coordinated organotellurium(IV) complexes of type RTeCl3·NMeIPT and R2TeCl2·NMeIPT (R = 4-hydroxyphenyl, 4-methoxyphenyl or 3-methy-4-hydroxyphenyl; NMeIPT(L) = Schiff base (1-methyl-3-(p-tolylimino)indolin-2-one) derived from condensation of 4-methylisatin and p-toluidine) have been synthesized and characterized by different spectral studies like elemental analyses, molar conductance, infrared, mass spectrometry, 1H NMR, 13C NMR and UV-visible spectroscopy. On the basis of spectroscopic data, it is evident that Schiff base behaves as NO donor bidentate ligand via azomethine nitrogen atom and oxygen atom from carbonyl group for all the tellurium(IV) complexes. The results showed that all the organotellurium(IV) complexes possess distorted octahedral geometry. Geometry of the all organotellurium(IV) complexes was optimized and their theoretical quantum mechanical parameters were calculated. This computational study also suggests octahedral geometry for complexes. The antimicrobial activity of NMeIPT and all the organotellurium(IV) complexes were screened against bacteria i.e. Xanthomonas campestris and Bacillus cereus and fungi i.e. Fusarium oxysporum, Candida albicans and Sclerotinia sclerotium.


2020 ◽  
Vol 12 (8) ◽  
pp. 1137-1148 ◽  
Author(s):  
Asma S. Al-Wasidi ◽  
Nawal M. Al-Jafshar ◽  
Amal M. Al-Anazi ◽  
Moamen S. Refat ◽  
Nashwa M. El-Metwaly ◽  
...  

In this article, four new Schiff base complexes of Mn(II), Co(II), Ni(II) and Cu(II) complexes have been synthesized with two different compositions as [M(L)2Cl2] · nH2O and [M(L)2(H2O)2]Cl2 · nH2O [where L1 = benzoin-o-amino benzoic acid (aromatic β amino acid) and L2 = benzoin bromo-o-amino benzoic acid (aromatic β amino acid); M = MnII, CoII, NiII and CuII; n = 1, 2 and 4]. These Schiff base complexes were discussed by many tool of analyses like elemental analysis, magnetic susceptibility, molar conductance, mass spectra, infrared spectra "IR," proton nuclear magnetic resonance "1H-NMR," electronic spectral and thermogravimetric analysis (TG/DTG). These complexes have an electrolytic nature within range of 78–174 Ω1 cm–1 mol –1 based on conductance measurements. Magnetic moment and electronic spectral results deduced that the geometry of Mn2+, Co2+ and Ni2+ and Cu2+ complexes has an octahedral configuration. The number of coordinated and uncoordinated water molecules for the synthesized complexes were calculated based on the thermal analysis technique. The kinetic thermodynamic data were estimated by using commonly integral equations of Horowitz-Metzger (HM) and Coats-Redfern (CR). In vitro the antimicrobial activity of both free L1 and L2 ligands in comparable with their metal complexes were evaluated. This study was strengthen by molecular docking against three protein receptors, which attributing to selected organisms already used in vitro study.


2019 ◽  
Vol 31 (4) ◽  
pp. 951-959 ◽  
Author(s):  
N.K. Chaudhary ◽  
B. Guragain

A novel AMXTC2 ligand was prepared by simultaneous stirring and refluxing of an equimolar mixture of amoxicillin and thiophene-2-carbaldehyde in methanol and was further used to synthesize metal complexes by metalation with cobalt and cadmium salts, taking ligand metal ratio 2:1. They were characterized by elemental microanalysis, FT-IR, mass, UV-visible, 1H NMR, thermal analysis, magnetic moment and molar conductance measurements. The coordination sites in the ligand were verified by their comparative and extensive spectral studies. The detailed exploration of the data suggested octahedral geometry for Co-AMXTC2 and tetrahedral geometry for Cd-AMXTC2 complexes. The thermodynamic and kinetic parameters such as E*, ΔH*, ΔS* and ΔG* of various decomposition steps were calculated from TGA curves using the Coats-Redfern method. The molar conductivity data suggested non-electrolytic nature of the complexes. SEM analysis was done to observe their surface morphology. The geometry optimization of the proposed molecular structure of the complexes was achieved by running MM2 calculation in Gaussian supported Cs-ChemOffice Ultra-11 program software. The biological activities had been evaluated in vitro against E. coli, K. pneumonia, P. vulgaris and S. aureus pathogens in order to assess their antibacterial potency. The biological data revealed better growth inhibitory action of the ligand and metal complexes with bacterial pathogens.


2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Ajay Mishra ◽  
Shivani Mishra ◽  
Narender Kaushik

AbstractSynthesis, characterization and biological studies of some thiodiamine metal complexes are described. Cobalt(II) and copper(II) complexes of type [Cu(L)2Cl2] and [Co(L)2SO4], where L = (cyclohexyl-N-thio)-1,2-ethylenediamine (L1) and (cyclohexyl-N-thio)-1,3-propanediamine (L2), were synthesized. The synthesized copper and cobalt thiodiamine complexes were characterized by elemental analysis, IR, mass, UV-VIS and 1H NMR spectroscopic studies. Thiodiamines coordinate as a bidentate N-S ligand. The binding sites are azomethine nitrogen and thioamide sulfur. Molar conductance values in dimethylsulfoxide indicate non-electrolyte nature of the complexes. In vitro-antimicrobial screening shows promising results against both bacterial and fungal strains.


2018 ◽  
Vol 10 (4) ◽  
pp. 11
Author(s):  
Helen Oluwatola Omoregie

Some mixed ligand nickel(II) complexes of thenoyltrifluoroacetone (tta-H) with 2,2ꞌ-bipyridine (bipy), 1,10-phenanthroline (phen) and tetramethylethylenediamine (tmen) [Ni(tta)(N-N)(NO3)]; N-N= bipy, phen, or tmen] have been synthesized and characterized by molar conductance measurements, elemental analysis, mass spectrometry, spectral measurements and antimicrobial activities. Attempt to prepare the mixed ligand nickel(II) complexes containing acetylacetone (acacH), benzoylacetone (bzacH), dibenzoylmethane (dbm-H) and thenoyltrifluoroacetone (tta-H) with ethylenediamine associated with NO3 counter ion led to the formation of [Ni(β-diketone)2en]. The β-diketones enolized acting as bidentate ligand, coordinating to the metal with carbonyl and enolic oxygen, ethylenediamine (en) coordinates to the metal using N, N chromophores. The nickel complexes of the type [Ni(tta)(N-N)NO3)] are five-coordinate square pyramidal in geometry while those of the type [Ni(β-diketone)2en] are six-coordinate octahedral geometry. The conductivity measurement in nitromethane revealed that the [Ni(tta)(N-N)NO3)] complexes are non-electrolyte. The complexes were screened for their in-vitro antimicrobial activity against six microorganisms. A comparison of the complexes with gentamicin showed that most of the complexes are resistant to tested organisms except [Ni(tta)2(en)].H2O, [Ni(bzac)2(en)] and [Ni(bta)2(en)] which compared favourably well in Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document