scholarly journals Dialysis Preparation of Smart Redox and Acidity Dual Responsive Tea Polyphenol Functionalized Calcium Phosphate Nanospheres as Anticancer Drug Carriers

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1221
Author(s):  
Xiuli Ren ◽  
Peng Zhang ◽  
Zhenhua Chen

Large-scale preparation of biocompatible drug delivery systems with targeted recognition and controlled release properties has always been attractive. However, this strategy has been constrained by a lot of design challenges, such as complicated steps and premature drug release. Herein, in this paper, we address these problems by a facile in situ mineralization method, which synthesizes biodegradable tea polyphenol coated monodisperse calcium phosphate nanospheres using for targeted and controlled delivery of doxorubicin. Dialysis diffusion method was used to control ion release to form mineralized nanospheres. The polyphenol coatings and calcium phosphate used in this work could be biodegraded by intracellular glutathione and acidic microenvironment, respectively, resulting the release of encapsulated drug. According to confocal fluorescence microscopy, and cytotoxicity experiments, the prepared tea polyphenol functionalized, doxorubicin loaded calcium phosphate nanospheres were confirmed to have highly efficient internalization and obvious cell killing effect on target tumor cells, but not normal cells. Our results suggest that these tea polyphenols functionalized calcium phosphate nanospheres are promising vehicles for controlled release of an anticancer drug in cancer therapy.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3753
Author(s):  
Bingbing Xu ◽  
Feng Ye ◽  
Guangtao Chang ◽  
Ruoxin Li

Liquid metals show unparalleled advantages in printable circuits, flexible wear, drug carriers, and electromagnetic shielding. However, the efficient and large-scale preparation of liquid metal nanodroplets (LM NDs) remains a significant challenge. Here, we propose a simple and efficient method for the large-scale preparation of stable eutectic gallium indium nanodroplets (EGaIn NDs). We compared different preparation methods and found that droplets with smaller particle sizes could quickly be produced using a shaking technique. The size of EGaIn NDs produced using this technique can reach 200 nm in 30 min and 100 nm in 240 min. Benefiting from the simple method, various surfactants can directly modify the surface of the EGaIn NDs to stabilize the prepared droplets. In addition, we discovered that shaking in an ice bath produced spherical nanodroplets, and after shaking for 30 min in a non-ice bath, rod-shaped gallium oxide hydroxide (GaOOH) appeared. Furthermore, the EGaIn NDs we produced have excellent stability—after storage at room temperature for 30 days, the particle size and morphology change little. The excellent stability of the produced EGaIn NDs provides a wider application of liquid metals in the fields of drug delivery, electromagnetic shielding, conductive inks, printed circuits, etc.


Author(s):  
Dongxu Zhou ◽  
Zhixiong Fei ◽  
Lunqiang Jin ◽  
Peng Zhou ◽  
Chenxi Li ◽  
...  

Dual-responsive polymersomes had pH-tuned temperature responsiveness, controlled the DOX and PTX release separately, and released DOX and PTX sustainably in tumor microenvironment.


1969 ◽  
Vol 22 (03) ◽  
pp. 577-583 ◽  
Author(s):  
M.M.P Paulssen ◽  
A.C.M.G.B Wouterlood ◽  
H.L.M.A Scheffers

SummaryFactor VIII can be isolated from plasma proteins, including fibrinogen by chromatography on agarose. The best results were obtained with Sepharose 6B. Large scale preparation is also possible when cryoprecipitate is separated by chromatography. In most fractions containing factor VIII a turbidity is observed which may be due to the presence of chylomicrons.The purified factor VIII was active in vivo as well as in vitro.


2020 ◽  
Vol 26 (15) ◽  
pp. 1637-1649 ◽  
Author(s):  
Imran Ali ◽  
Sofi D. Mukhtar ◽  
Heyam S. Ali ◽  
Marcus T. Scotti ◽  
Luciana Scotti

Background: Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors that have recently been developed and recommended for use by scientists because of their potential targeting capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery. Method: The present review article provides an overview of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors. Results: This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine, personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and perspectives, biodegradability and safety. Conclusions: This article will benefit academia, researchers, clinicians, and government authorities by providing a basis for further research advancements.


2020 ◽  
Vol 17 (8) ◽  
pp. 628-630
Author(s):  
Vu Binh Duong ◽  
Pham Van Hien ◽  
Tran Thai Ngoc ◽  
Phan Dinh Chau ◽  
Tran Khac Vu

A simple and practical method for the synthesis on a large scale of altretamine (1), a wellknown antitumor drug, has been successfully developed. The synthesis method involves the conversion of cyanuric chloride (2) into altretamine (1) by dimethylamination of 2 with an aqueous solution of 40% dimethylamine and potassium hydroxide in 1, -dioxan 4in one step to give altretamine (1) in high yield.


Sign in / Sign up

Export Citation Format

Share Document