scholarly journals Flavones Contents in Extracts from Oroxylum indicum Seeds and Plant Tissue Cultures

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1545 ◽  
Author(s):  
Piyanuch Rojsanga ◽  
Somnuk Bunsupa ◽  
Pongtip Sithisarn

Oroxylum indicum (L.) Benth. ex Kurz or Pheka, is a plant in the Bignoniaceae family with various traditional uses. The mature fruits promote anti-helminthic and stomachic effects, while the seeds have been used as a purgative and for the relief of tonsil pain. The young fruits are popularly consumed as vegetables, while the seeds are one of the components in traditional drink formulations. To develop new plant raw material sources, a plant tissue culture technique was used to generate plant tissue cultured samples from the seeds of O. indicum. Plant tissue cultured samples were collected from three different growth stages; 4 days, then at 3 and 9 weeks, and prepared as crude extracts by maceration with ethanol, along with the seed raw material sample. A high performance liquid chromatographic (HPLC) method was used for quantitative analysis of the contents of the three major flavones; baicalin, baicalein, and chrysin in the extracts from the seeds and plant tissue cultured samples of this plant. Baicalin was found in the highest amount among these three flavones in all extracts. The seed extract contained the highest baicalin content (24.24% w/w in the extract), followed by the shoot extract from tissue-cultured plant at week 3 (14.78% w/w of the extract). The amounts of chrysin in all O. indicum showed the same trend as the contents of baicalin, but the amounts were lower, while baicalein was accumulated at the lowest amount among three flavonoids and the amounts were quite stable in all O. indicum extracts. From the results, O. indicum seed and plant tissue cultured extracts have potential as sources of flavones, which could be further developed as health products in the future.

2008 ◽  
Vol 91 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Andréia de Haro Moreno ◽  
Hérida Regina Nunes Salgado

Abstract A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanolwater (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 g/mL. The values for interday and intraday precision (relative standard deviation) were <1. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.


2010 ◽  
Vol 93 (4) ◽  
pp. 1228-1235 ◽  
Author(s):  
Mohamed Walash ◽  
Mohamed Metwally ◽  
Manal Eid ◽  
Rania El-Shaheny

Abstract A micellar HPLC method was developed for analysis of the antiosteoporosis drug risedronate. The analysis was carried out using a 250 4.6 mm id, 5 m particle size C18 Waters Symmetry column. The mobile phase consisted of 0.02 M sodium dodecyl sulfate + 0.3 triethylamine + 10 n-propanol, prepared in 0.02 M orthophosphoric acid. The pH of the mobile phase was adjusted to pH 6.0, and it was pumped at a flow rate of 0.7 mL/min with UV detection at 262 nm. The method showed good linearity in the range of 280 g/mL, with an LOD of 0.40 g/mL (1.31 106 M) and an LOQ of 1.21 g/mL. The suggested method was successfully applied for the analysis of risedronate in raw material and a tablet formulation, with average recoveries of 99.91 1.30 and 101.52 0.30, respectively. The stability-indicating capability of the proposed method was proved using forced degradation. By changing the pH of the mobile phase to 4.0, the oxidative degradation product could be separated from risedronate.


2018 ◽  
Vol 64 (4) ◽  
pp. 54-62 ◽  
Author(s):  
Alok Nahata ◽  
Neeraj K. Sethiya ◽  
Neha Jain ◽  
Vinod Kumar Dixit

Summary Introduction: Shankhpushpi has been widely used in traditional Indian systems of medicine as a brain and memory boosting tonic. There are a variety of botanicals reported to be used as sources of Shankhpushpi in various parts of India. For instance, Canscora decussata Schult, Clitorea ternatea Linn., Convolvulus pluricaulis Choisy. and Evolvulus alsinoides Linn. are most commonly used as sources of Shankhpushpi by practitioners of Ayurveda in different parts of the country. Objective: When it comes to using Shankhpushpi in herbal formulations, qualitative and quantitative analysis of the correct botanicals in the formulation decides its pharmacological effectiveness. Scopoletin and mangiferin are proven bioactive markers identified in Shankhpushpi botanicals in our previous studies. Hence the study is aimed at providing a simple analytical method for the identification of the correct variety of Shankhpushpi using proven markers. Methods: In this study, a High Performance Liquid Chromatographic (HPLC) method has been developed for the estimation of scopoletin and mangiferin levels in four botanicals of Shankhpushpi and their marketed formulations. Result: A simple analytical method was developed which proved to be very crucial in estimating concentrations of mangiferin and scopoletin in various test samples. This method can be used to identify the correct botanicals of Shankhpushpi present in any Ayurvedic formulation or raw material or processed powder by evaluating the content of scopoletin or mangiferin as markers. Conclusion: The developed HPLC method is a quick and reliable method for the quantitative monitoring of mangiferin and scopoletin in herbal extracts and marketed formulations of Shankhpushpi.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1937 ◽  
Author(s):  
Patchima Sithisarn ◽  
Piyanuch Rojsanga ◽  
Pongtip Sithisarn

Oroxylum indicum is a medicinal plant in Thailand, which has been used as a tonic and for the treatment of various diseases. Extracts from various parts of O. indicum were reported as promoting in vitro antioxidant and antibacterial effects. Phytochemical analysis suggested that this plant contained some flavones. O. indicum fruit and seed water and ethanol extracts and their major flavonoids including baicalein, baicalin, and chrysin were tested for in vitro antibacterial activities on four clinical isolated bacteria, namely, Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, and β-Escherichia coli, using a broth micro-dilution assay. The amounts of these three major flavonoids were also quantitatively analyzed using the high-performance liquid chromatographic (HPLC) method. O. indicum fruit ethanol extract from Nakhon Pathom province (OFNE) promoted the strongest antimicrobial activity against four clinical pathogenic bacteria, including S. intermedius (IC50 = 1.30 mg/mL), S. suis (13.59% inhibition at 7.81 mg/mL), P. aeruginosa (IC50 = 39.20 mg/mL), and β-E. coli (IC50 = 66.85 mg/mL). Baicalin showed high in vitro antibacterial effect to all tested bacteria. From the optimized and validated HPLC method, baicalin, baicalein, and chrysin contents in O. indicum extracts were 0.19 ± 0.00 − 9.45 ± 0.13, 0.14 ± 0.00 − 1.27 ± 0.02, and 0.02 ± 0.00 − 0.96 ± 0.02 g/100 g extract, respectively. Baicalin was found to be the major compound in O. indicum seed extract followed by baicalein, whereas chrysin was found in lower amounts than the amounts of the other two flavonoids in all O. indicum extracts.


1990 ◽  
Vol 36 (1) ◽  
pp. 5-8 ◽  
Author(s):  
J G Goddard ◽  
G J Kontoghiorghes

Abstract "High-performance" liquid-chromatographic (HPLC) methods have been developed for identifying 1-substituted 2-alkyl-3-hydroxypyrid-4-one iron chelators in serum and urine. Ion pairing with heptane- or octanesulfonic acid in pH 2.0-2.2 phosphate buffer and reversed-phase chromatography were required to separate these compounds from endogenous compounds in both biological fluids. In both the 2-methyl and 2-ethyl series of 1-substituted compounds (H, methyl, ethyl, or propyl) the elution times increased in accordance with the n-octanol/water partition coefficients (propyl greater than ethyl greater than H greater than methyl). Urine samples were filtered (0.4 microns pore size) and injected either undiluted or after dilution with elution buffer. After the addition of internal standard, the plasma or serum samples were deproteinized by treatment with HCIO4, 0.5 mol/L, centrifuged, and the supernates were injected directly onto the HPLC. Using these procedures, we could identify 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in the serum and urine of a thalassemic patient who had received a 3-g dose of the drug and in the urine of other patients who had received the same dose. One or more possible metabolites were also observed in the chromatograms of both urine and serum. The 24-h urinary output of L1 (0.22-2.37 g) and iron (10.6-71.5 mg) varied but there was no correlation between the two with respect to quantity or concentration. Instead, urinary iron output was higher in patients with a greater number of transfused units of erythrocytes. This is the first study in humans to show that L1 is absorbed from the gut, enters the circulation, and is excreted in the urine.


2011 ◽  
Vol 8 (s1) ◽  
pp. S41-S46
Author(s):  
Prafulla Kumar Sahu ◽  
M. Mathrusri Annapurna ◽  
Dillipkumar Sahoo

This paper describes a high-performance liquid chromatographic method for simultaneous estimation of nabumetone and paracetamol in binary mixture. The method was based on RP-HPLC separation and quantitation of the two drugs on hypersil C-18 column (250 mm × 4.6 mm) using a mobile phase consisting of acetonitrile and 0.05% aqueous acetic acid (70:30v/v) at flow rate of 1 mL min-1. Quantitation was achieved with PDA detector at 238 nm based on peak area with linear calibration curves at concentration ranges 5-25 µg mL-1for both the drugs. Naproxen sodium was used as internal standard. The method has been successively applied to pharmaceutical formulation. No chromatographic interference from the tablet excipients was found. The method was validated in terms of precision, robustness, recovery and limits of detection and quantitation. The intra and inter-day precision and accuracy values were in the acceptance range as per ICH guidelines.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (03) ◽  
pp. 39-45
Author(s):  
A Sherje ◽  
A. Sonalkar ◽  

A reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of olmesartan medoxomil (OLME) and chlorthalidone (CHLOR) in tablet dosage form. The analysis was performed on Inertsil ODS C18 (250 x 4.6 mm, 5 μ) using KH2PO4 phosphate buffer (pH) and acetonitrile as mobile phase in the proportion of 60: 40 v/v at flow rate of 1.0 mL/min. Detection of drugs was carried out in isocratic mode using UV detector at 275 nm. The retention time of OLME and CHLOR was 13.9 ± 0.1 min. and 4.4 ± 0.5 min., respectively and the total run time was 20 min. The method was validated according to the requirements of the United States Pharmacopeia. The percentage recoveries was found to be in the range of 98.9 - 100.7%. The method was successfully applied to the assay of OLME and CHLOR in tablet dosage form.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 32-37
Author(s):  
Vijaya Lakshmi Marella ◽  
Chaitanya S. N ◽  

A selective and sensitive reverse phase High Performance Liquid Chromatographic method has been developed and validated for the estimation of lornoxicam in bulk, pharmaceutical dosage forms and in dissolution samples. The analysis was performed isocratically on an Inertsil column (250* 4.6 mm, 5 µm) using a mass spectrometric compatible mobile phase of 10 mM ammonium acetate: acetonitrile (50:50 V/V) at a flow rate of 1 mL/min.The detection wavelength was 290 nm. The retention time was found to be 4.573 min for lornoxicam. The linearity of the method has been satisfied with Beer Lambert’s law in the concentration range of 5-25 µg/mL with a correlation coefficient of 0.9988. The mean recoveries assessed for lornoxicam were in the range of 100.39-101.86 %, indicating good accuracy of the method. The limit of detection and limit of quantification were found to be 0.03 and 0.11 µg/mL, respectively. The developed method has been statistically validated in accordance with ICH guidelines and found to be mass spectrometric compatible, simple, precise, and accurate with the prescribed values. Thus, the proposed method was successfully applied for the estimation of lornoxicam in routine quality control analysis of bulk, formulations and in dissolution samples.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (05) ◽  
pp. 48-52
Author(s):  
A Lodhi ◽  
◽  
A Jain ◽  
B. Biswal

A validated high performance liquid chromatographic method was developed for the determination of chromium picolinate in pharmaceutical dosage forms. The analysis was performed at room temperature using a reversed-phase ODS, 5µm (250×4.6) mm column. The mobile phase consisted of acetonitrile: buffer (60:40 V/V) at a flow rate of 0.5 mL/min. The PDA-detector was set at 264 nm. The developed method showed a good linear relationship in the concentration range from 1.5 – 12.5 µg/mL with a correlation coefficient from 0.999. The limit of detection and limit of quantification were 0.0540513 and 0.1637919 µg/mL respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Suying Ma ◽  
Haixia Lv ◽  
Xiaojun Shang

A high performance liquid chromatographic (HPLC) method with UV detector for the determination of dyclonine hydrochloride and a gas chromatography (GC) method with flame ionization detector (FID) for the determination of camphor and menthol in lotion were developed. The developed HPLC method involved using a SinoChoom ODS-BP C18reversed-phase column (5 μm, 4.6 mm × 200 mm) and mobile phase consisting of acetonitrile : water : triethylamine in a ratio of 45 : 55 : 1.0; pH was adjusted to 3.5 with glacial acetic acid. The developed GC method for determination of camphor and menthol involved using an Agilent 19091J-413 capillary chromatographic column (30 m × 320 μm × 0.25 μm). The two methods were validated according to official compendia guidelines. The calibration of dyclonine hydrochloride for HPLC method was linear over the range of 20–200 μg/mL. The retention time was found at 6.0 min for dyclonine hydrochloride. The calibration of camphor and menthol of GC method was linear over the range of 10–2000 μg/mL. The retention time was found at 2.9 min for camphor and 3.05 min for menthol. The proposed HPLC and GC methods were proved to be suitable for the determination of dyclonine hydrochloride, camphor, and menthol in lotion.


Sign in / Sign up

Export Citation Format

Share Document