scholarly journals Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1716 ◽  
Author(s):  
Paul Strasser ◽  
Ian Teasdale

Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure–property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3654
Author(s):  
Rayya A. Al-Balushi ◽  
Ashanul Haque ◽  
Idris J. Al-Busaidi ◽  
Houda Al-Sharji ◽  
Muhammad S. Khan

Metalla-ynes and poly(metalla-ynes) have emerged as unique molecular scaffolds with fascinating structural features and intriguing photo-luminescence (PL) properties. Their rigid-rod conducting backbone with tunable photo-physical properties has generated immense research interests for the design and development of application-oriented functional materials. Introducing a second d- or f-block metal fragment in the main-chain or side-chain of a metalla-yne and poly(metalla-yne) was found to further modulate the underlying features/properties. This review focuses on the photo-physical properties and opto-electronic (O-E) applications of heterometal grafted metalla-ynes and poly(metalla-ynes).


Author(s):  
Francesca P. A. Fabbiani

High pressure has become an indispensable research tool in the quest for novel functional materials. High-pressure crystallographic studies on non-porous, framework materials based on coordination compounds are markedly on the rise, enabling the unravelling of structural phenomena and taking us a step closer to the derivation of structure–property relationships.


2015 ◽  
Vol 177 ◽  
pp. 249-262 ◽  
Author(s):  
Z. Y. Tian ◽  
H. Vieker ◽  
P. Mountapmbeme Kouotou ◽  
A. Beyer

In situ emission and absorption FTIR methods were employed to characterize the spatially resolved structure of binary Co–Cu oxides for low-temperature oxidation of CO and propene. Co–Cu oxide catalysts were controllably synthesized by pulsed-spray evaporation chemical vapor deposition. XRD, FTIR, XPS, UV-vis and helium ion microscopy (HIM) were employed to characterize the as-prepared thin films in terms of structure, composition, optical and thermal properties as well as morphology. In situ emission FTIR spectroscopy indicates that Co3O4, CuCo2O4 and CuO are thermally stable at 650, 655 and 450 °C, respectively. The catalytic tests with absorption FTIR display that the involvement of Co–Cu oxides can initiate CO and C3H6 oxidation at lower temperatures. The results indicate that in situ emission and absorption FTIR are useful techniques to explore the thermal properties and catalytic performance of functional materials, allowing many potential applications in tailoring their temporally and spatially resolved structure-property relationships.


2017 ◽  
Vol 90 (2) ◽  
pp. 308-324 ◽  
Author(s):  
Taejun Yoo ◽  
Steven K. Henning

ABSTRACT A bio-based route to the production of trans-β-farnesene has recently been commercialized. Trans-β-farnesene is capable of being polymerized by both anionic and cationic pathways, creating low molecular weight polymers with structure–property relationships unique within the diene class of monomers. Trans-β-farnesene is produced through fermentation of sugar feedstocks. The pathway offers an alternative to petroleum-based feedstocks derived as by-products of naphtha or ethane cracking. Anionic polymerization of the monomer produces a highly branched “bottlebrush” structure, with rheological properties that are markedly different than those of linear diene polymers. Specifically, a lack of entanglements is observed even at relatively high molar masses. For hydroxyl-terminated oligomers, Tg as a function of molar mass follows a trend opposite non-functional materials. The synthesis and characterization of trans-β-farnesene–based polymers will be presented, including anionically prepared low molecular weight diols and monols.


2000 ◽  
Vol 36 (6) ◽  
pp. 1113-1126 ◽  
Author(s):  
G. Georgoussis ◽  
A. Kanapitsas ◽  
P. Pissis ◽  
Yu.V. Savelyev ◽  
V.Ya. Veselov ◽  
...  

2017 ◽  
Vol 46 (39) ◽  
pp. 13322-13341 ◽  
Author(s):  
Norihito Fukui ◽  
Keisuke Fujimoto ◽  
Hideki Yorimitsu ◽  
Atsuhiro Osuka

Incorporation of planarized heteroatom(s) onto the porphyrin periphery is an effective approach to create porphyrin-based functional materials. This review aims to cover a variety of synthetic methodologies that have been developed for the construction of heteroatom-embedded porphyrins as well as their structure–property relationships and possible applications in various research fields.


Author(s):  
P. V. Balachandran ◽  
J. M. Rondinelli

This chapter is aimed at readers interested in the topic of informatics-based approaches for accelerated materials discovery, but who are unfamiliar with the nuances of the underlying principles and various types of powerful mathematical tools that are involved in formulating structure–property relationships. In an attempt to simplify the workflow of materials informatics, we decompose the paradigm into several core subtasks: hypothesis generation, database construction, data pre-processing, mathematical modeling, model validation, and finally hypothesis testing. We discuss each task and provide illustrative case studies, which apply these methods to various functional ceramic materials.


Sign in / Sign up

Export Citation Format

Share Document