scholarly journals Localization of Flavan-3-ol Species in Peanut Testa by Mass Spectrometry Imaging

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2373 ◽  
Author(s):  
Hirofumi Enomoto ◽  
Takashi Nirasawa

Flavan-3-ols, procyanidins and their monomers are major flavonoids present in peanuts that show a wide range of biological properties and health benefits, based on their potent antioxidant activity. Procyanidin oligomers, especially A-type, are reportedly abundant in peanut skin; however, their localization in the raw peanut testa remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate the localization of flavan-3-ols in peanut testa. 1,5-Diaminonaphthalene was coated onto the peanut section by matrix vapor deposition/recrystallization, and MALDI-MSI measurements were performed in the negative-ion mode. Peaks matching the m/z values of flavan-3-ol [M − H]− ions were observed in the mass spectrum extracted from the outer epidermis of the peanut testa, using the region of interest function. Catechin and/or epicatechin, five A-type, and one B-type procyanidins were assigned by the fragment ions generated by retro-Diels-Alder, heterocyclic ring fission, and quinone methide reactions detected in MALDI-tandem MS spectra. These flavan-3-ols were localized in the outer epidermis of the peanut testa. This information will contribute to improving the extraction and purification efficiencies of flavan-3-ols from peanut testa. As flavan-3-ols display anti-microbial activity, it is speculated that flavan-3-ols present in the outer epidermis of peanut testa act to prevent pathogen infection.

Author(s):  
Riccardo Zecchi ◽  
Pietro Franceschi ◽  
Laura Tigli ◽  
Davide Amidani ◽  
Chiara Catozzi ◽  
...  

AbstractCorticosteroids as budesonide can be effective in reducing topic inflammation processes in different organs. Therapeutic use of budesonide in respiratory diseases, like asthma, chronic obstructive pulmonary disease, and allergic rhinitis is well known. However, the pulmonary distribution of budesonide is not well understood, mainly due to the difficulties in tracing the molecule in lung samples without the addition of a label. In this paper, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging protocol that can be used to visualize the pulmonary distribution of budesonide administered to a surfactant-depleted adult rabbit. Considering that budesonide is not easily ionized by MALDI, we developed an on-tissue derivatization method with Girard’s reagent P followed by ferulic acid deposition as MALDI matrix. Interestingly, this sample preparation protocol results as a very effective strategy to raise the sensitivity towards not only budesonide but also other corticosteroids, allowing us to track its distribution and quantify the drug inside lung samples. Graphical abstract


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 610
Author(s):  
Mariann Inga Van Meter ◽  
Salah M. Khan ◽  
Brynne V. Taulbee-Cotton ◽  
Nathan H. Dimmitt ◽  
Nathan D. Hubbard ◽  
...  

Agglomeration of active pharmaceutical ingredients (API) in tablets can lead to decreased bioavailability in some enabling formulations. In a previous study, we determined that crystalline APIs can be detected as agglomeration in tablets formulated with amorphous acetaminophen tablets. Multiple method advancements are presented to better resolve agglomeration caused by crystallinity in standard tablets. In this study, we also evaluate three “budget” over-the-counter headache medications (subsequently labeled as brands A, B, and C) for agglomeration of the three APIs in the formulation: Acetaminophen, aspirin, and caffeine. Electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) was used to diagnose agglomeration in the tablets by creating molecular images and observing the spatial distributions of the APIs. Brand A had virtually no agglomeration or clustering of the active ingredients. Brand B had extensive clustering of aspirin and caffeine, but acetaminophen was observed in near equal abundance across the tablet. Brand C also had extensive clustering of aspirin and caffeine, and minor clustering of acetaminophen. These results show that agglomeration with active ingredients in over-the-counter tablets can be simultaneously detected using ELDI-MS imaging.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3184
Author(s):  
Zhiyang Wu ◽  
Patrick Hundsdoerfer ◽  
Johannes H. Schulte ◽  
Kathy Astrahantseff ◽  
Senguel Boral ◽  
...  

Risk classification plays a crucial role in clinical management and therapy decisions in children with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors in single tumor biopsies at diagnosis. Growing evidence of extensive neuroblastoma intratumor heterogeneity drives the need for novel diagnostics to assess molecular profiles more comprehensively in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a pilot study investigating the feasibility and potential of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblastoma tissues of divergent current risk classification: high versus low/intermediate risk. Univariate (receiver operating characteristic analysis) and multivariate (segmentation, principal component analysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide signatures. The AHNAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were identified as proteins associated with these peptide signatures, and their differential expression in the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues. These results suggest a promising new analytical strategy improving risk classification and providing new biological insights into neuroblastoma intratumor heterogeneity.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S386-S387
Author(s):  
Sydney C Povilaitis ◽  
Ashish D Chakraborty ◽  
Rachel D Downey ◽  
Sarmistha Bhaduri Hauger ◽  
Livia Eberlin

Abstract Background In the age of antimicrobial resistance, rapid identification of infectious agents is critical for antimicrobial stewardship and effective therapy. To this end, ambient ionization mass spectrometry techniques have been applied for rapid identification of microbes directly from culture isolates. We have developed a handheld, mass spectrometry-based device, the MasSpec Pen, that permits direct molecular analysis of a biological sample in seconds (Scheme 1). Here, we employ the MasSpec Pen to identify clinically relevant microbes directly from culture isolates. Methods Staphylococcus aureus, Staphylococcus epidermidis, Group A and B Streptococcus, Kingella kingae (K.k), and Pseudomonas aeruginosa (P.a) were cultured on 5% sheep’s blood nutrient agar at 37 °C overnight. Colonies were transferred to a glass slide where they were analyzed directly with the MasSpec Pen coupled to a Q Exactive mass spectrometer (Thermo Scientific) in negative ion mode. For MasSpec Pen analysis, a 10 µL droplet of water was held in contact with the sample surface for 3 seconds and then aspirated to the mass spectrometer for analysis. Data was normalized and the molecular features resulting from the analysis solvent and nutrient medium were removed. The least absolute shrinkage and selection operator (lasso) statistical method was used to build classification models for prediction of bacterial identity. Model performance was evaluated by leave-one-out cross-validation and a validation set of samples. Scheme 1: MasSpec Pen workflow Results Various small molecules were detected including metabolites and glycerophospholipid species. The mass spectral profiles for each species exhibited qualitative differences among them (Figure 1). Additionally, several quorum-sensing molecules were observed in P.a. including hydroxy-heptyl-quinoline (m/z 242.155). Lasso statistical classifiers were created to differentiate organisms at the level of Gram type, genus, and species with each model comprised of a sparse set of molecular features. Accuracies of 90% or greater were achieved for all lasso models and as high as 98% for the differentiation of Staphylococcus (Staph.) and Streptococcus (Strep.). Figure 1: Molecular profiles of species analyzed Figure 2: Statistical classification results Conclusion These results demonstrate the potential of the MasSpec Pen as a tool for clinical analysis of infected biospecimens. Disclosures Sydney C. Povilaitis, BA, MS Pen Technologies, Inc. (Other Financial or Material Support, Patent) Livia Eberlin, PhD, MS Pen Technolpogies, Inc. (Board Member, Shareholder)


Sign in / Sign up

Export Citation Format

Share Document