scholarly journals Effects of Pyrrole-Imidazole Polyamides Targeting Human TGF-β1 on the Malignant Phenotypes of Liver Cancer Cells

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2883 ◽  
Author(s):  
Keiko Takagi ◽  
Yutaka Midorikawa ◽  
Tadatoshi Takayama ◽  
Hayato Abe ◽  
Kyoko Fujiwara ◽  
...  

Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qunwei Chen ◽  
Wanfu Lin ◽  
Zifei Yin ◽  
Yong Zou ◽  
Shufang Liang ◽  
...  

In this study, we investigated whether melittin could suppress hypoxia-induced vasculogenic mimicry (VM) formation in liver cancer and explored the underlying mechanisms. Melittin significantly inhibited the proliferation of liver cancer cells with or without CoCl2presence. Melittin also significantly inhibited CoCl2-induced migration, invasion, and VM formation of liver cancer cells. CoCl2treatment suppressed the expression of E-cadherin and elevated the expression of N-cadherin and Vimentin. Melittin reversed the changes in the protein and mRNA levels of these epithelial-mesenchymal transition (EMT) markers. CoCl2-induced accumulation of HIF-1αincreased the level of phosphorylated Akt and upregulated the expression of VEGF and MMP-2/9. Melittin decreased the HIF-1αlevel and thereby suppressed the levels of p-Akt, VEGF, and MMP-2/9. In addition, the inhibitor of PI3K/Akt also suppressed CoCl2-induced EMT and liver cancer cells migration, and the activator of Akt, SC-79, partly blocked the effect of melittin on CoCl2-induced EMT and liver cancer cells migration. In the xenograft tumor model in nude mice, melittin treatment significantly suppressed the tumor growth, VM formation, and HIF-1αexpression in the tumor. In conclusion, this study indicates melittin may inhibit hypoxia-induced VM formation and EMT in liver cancer through inhibiting HIF-1α/Akt pathway.


2015 ◽  
Vol 25 (9) ◽  
pp. 1574-1581 ◽  
Author(s):  
Zhongxue Ye ◽  
Le Zhao ◽  
Jie Li ◽  
Wei Chen ◽  
Xu Li

ObjectiveMicroRNAs (miRs) are essential regulators of gene expression by suppressing translation or causing degradation of target mRNA. Growing evidence sheds light on the crucial roles of miR dysregulation in cancer development and progression. In this study, we focused on the role of miR-30d in transforming growth factor β1 (TGF-β1)–initiated epithelial-mesenchymal transition (EMT) in ovarian cancer cells.MethodsTransforming growth factor β1 (10 ng/mL) was used to initiate EMT in SKOV3 and 3AO cells. The expression of miR-30 family members was determined by quantitative real-time polymerase chain reaction. Messenger RNA and protein levels of E-cadherin, N-cadherin, vimentin, and Snail were detected by quantitative real-time polymerase chain reaction and Western blot, respectively. Cell migration and invasion capacities were evaluated by Transwell chamber assay. Luciferase activity assay was performed to verify the direct inhibition of Snail by miR-30d.ResultsMiR-30b, MiR-30c, and MiR-30d were down-regulated during TGF-β1–induced EMT in SKOV3 and 3AO ovarian cancer cells. Restoration of miR-30d by miR-30d mimic reversed TGF-β1–induced EMT phenotypes including the morphological changes, expression pattern of molecular markers (E-cadherin, N-cadherin), and migratory and invasive capabilities in ovarian cancer cells. Furthermore, Snail was identified as the direct target of miR-30d.ConclusionsOur results revealed that miR-30d functioned as a suppressor of ovarian cancer progression by decreasing Snail expression and thus blocking TGF-β1–induced EMT process, suggesting the potentiality of miR-30d analogs to be used as therapeutics for ovarian cancer.


2020 ◽  
Vol 20 (1) ◽  
pp. 257-265
Author(s):  
Xing Ma ◽  
Jiening Wang ◽  
Juhua Zhuang ◽  
Xiaokun Ma ◽  
Ni Zheng ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 143
Author(s):  
Ji-Hoon Jeong ◽  
Hyunhee Kim ◽  
Seung-Ho Park ◽  
Hayeon Park ◽  
Minseok Jeong ◽  
...  

Transforming growth factor-β1 (TGF-β1) is highly expressed in the tumor microenvironment and known to play a multifunctional role in cancer progression. In addition, TGF-β1 promotes metastasis by inducing epithelial–mesenchymal transition (EMT) in a variety of tumors. Thus, inhibition of TGF-β1 is considered an important strategy in the treatment of cancer. In most tumors, TGF-β1 signal transduction exhibits modified or non-functional characteristics, and TGF-β1 inhibitors have various inhibitory effects on cancer cells. Currently, many studies are being conducted to develop TGF-β1 inhibitors from non-toxic natural compounds. We aimed to develop a new TGF-β1 inhibitor to suppress EMT in cancer cells. As a result, improved chalcone-like chain CTI-82 was identified, and its effect was confirmed in vitro. We showed that CTI-82 blocked TGF-β1-induced EMT by inhibiting the cell migration and metastasis of A549 lung cancer cells. In addition, CTI-82 reduced the TGF-β1-induced phosphorylation of SMAD2/3 and inhibited the expression of various EMT markers. Our results suggest that CTI-82 inhibits tumor growth, migration, and metastasis.


Sign in / Sign up

Export Citation Format

Share Document