scholarly journals Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3484 ◽  
Author(s):  
Maíra Rosato Silveiral Silvério ◽  
Laila Salmen Espindola ◽  
Norberto Peporine Lopes ◽  
Paulo Cézar Vieira

The mosquito species Aedes aegypti is one of the main vectors of arboviruses, including dengue, Zika and chikungunya. Considering the deficiency or absence of vaccines to prevent these diseases, vector control remains an important strategy. The use of plant natural product-based insecticides constitutes an alternative to chemical insecticides as they are degraded more easily and are less harmful to the environment, not to mention their lower toxicity to non-target insects. This review details plant species and their secondary metabolites that have demonstrated insecticidal properties (ovicidal, larvicidal, pupicidal, adulticidal, repellent and ovipositional effects) against the mosquito, together with their mechanisms of action. In particular, essential oils and some of their chemical constituents such as terpenoids and phenylpropanoids offer distinct advantages. Thiophenes, amides and alkaloids also possess high larvicidal and adulticidal activities, adding to the wealth of plant natural products with potential in vector control applications.

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4568 ◽  
Author(s):  
Mayara Castro de Morais ◽  
Jucieudo Virgulino de Souza ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Silvio Santana Dolabella ◽  
Damião Pergentino de Sousa

Trypanosomiases are diseases caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans, this includes Chagas disease and African trypanosomiasis. There are few therapeutic options, and there is low efficacy to clinical treatment. Therefore, the search for new drugs for the trypanosomiasis is urgent. This review describes studies of the trypanocidal properties of essential oils, an important group of natural products widely found in several tropical countries. Seventy-seven plants were selected from literature for the trypanocidal activity of their essential oils. The main chemical constituents and mechanisms of action are also discussed. In vitro and in vivo experimental data show the therapeutic potential of these natural products for the treatment of infections caused by species of Trypanosoma.


2019 ◽  
Vol 15 (1) ◽  
pp. 57
Author(s):  
Devi Anggraini Putri ◽  
Sri Fatmawati

<p class="Katakunci"><em>Muntingia calabura</em> (<em>Muntingiaceae</em>) merupakan <em>Jamaican cherry</em> yang dikenal di Indonesia sebagai Kersen atau Talok. Metabolit sekunder sebagai konstituen kimia telah diisolasi dari daun, batang dan akar <em>M. calabura</em>. Flavonoid merupakan konstituen utama penyusun metabolit sekunder dari tanaman ini. Kelompok flavonoid telah dilaporkan memiliki efek farmakologi yang baik. Beberapa literatur melaporkan bioaktivitas <em>M. calabura</em> sebagai antioksidan, antidiabetes, antimikroba, antikanker, anti-inflamasi dan lain-lain. Review ini bertujuan memberikan fakta ilmiah terkait sinergitas metabolit sekunder dan bioaktivitas <em>M. calabura</em> yang diperlukan untuk penelitian kimia bahan alam lebih lanjut.</p><p><strong>The<em> </em></strong><strong>secondary metabolites </strong><strong>of</strong><strong> <em>Muntingia </em></strong><strong><em>c</em></strong><strong><em>alabura</em></strong><strong> and </strong><strong>its </strong><strong>bioactivity</strong><strong>.</strong><strong> </strong><em>Muntingia calabura</em> (<em>Mutingiaceae</em>) was recognized as <em>Jamaican</em> cherry called as <em>K</em><em>ersen</em> or <em>T</em><em>alok</em> in Indonesia. The chemical constituents have been isolated from leave, stem and root of <em>M. calabura</em>. The main chemical constituent of the secondary metabolite is flavonoid. The flavonoid group has been reported as a good source in pharmacological aspect. Most of literatures reported that <em>M. calabura</em> has a good bioactivity as an antioxidant, antidiabetic, antimicrobial, anticancer, anti-inflammatory and others. This review aims to provide the scientific evidences related to the synergism of secondary metabolites and the bioactivities of <em>M. calabura </em>for further research on natural products.</p>


2020 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract Background The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti , an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively. Methods We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. Results The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of genotypes associated with resistancein several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns observed. Conclusions The genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles associated with resistance.


2019 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract BackgroundThe development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti, an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively.MethodsWe used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. ResultsThe scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of resistance in several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of insecticide resistance frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns in resistance observed.ConclusionsThe genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence the outcome of resistance.


2020 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract Background The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti , an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively. Methods We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. Results The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of genotypes associated with resistancein several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns observed. Conclusions The genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles associated with resistance.


2020 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract Background The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti , an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively. Methods We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. Results The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of genotypes associated with resistancein several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns observed. Conclusions The genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles associated with resistance.


2020 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract Background The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti , an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively.Methods We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models.Results The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of resistance in several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of insecticide resistance frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns in resistance observed.Conclusions The genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence the outcome of resistance.


2020 ◽  
Vol 10 (1) ◽  
pp. 67-77
Author(s):  
Amos Watentena ◽  
Ikem Chris Okoye ◽  
Ikechukwu Eugene Onah ◽  
Onwude Cosmas Ogbonnaya ◽  
Emmanuel Ogudu

Mosquitoes of Aedes species are vectors of several arboviral diseases which continue to be a major public health problem in Nigeria. This study among other things, morphologically identified Aedes mosquitoes collected from Nsukka LGA and used an allele specific PCR amplification for discrimination of dengue vectors. Larval sampling, BG-sentinel traps and modified human landing catches were used for mosquito sampling in two selected autonomous communities of Nsukka LGA (Nsukka and Obimo). A total of 124 Aedes mosquitoes consisting of five (5) different species were collected from April to June, 2019 in a cross-sectional study that covered 126 households, under 76 distinct geographical coordinates. Larvae was mainly collected from plastic containers 73% (n=224), metallic containers 14% (n=43), earthen pots 9% (n=29) and used car tyres 3% (n=9), reared to adult stage 69.35% (n=86), and all mosquitoes were identified using standard morphological keys. Five (5) Aedes mosquito species were captured; Aedes aegypti 83(66.94%), Aedes albopictus 33(26.61%), Aedes simpsoni (4.48%), Aedes luteocephalus (≤1%) and Aedes vittatus (≤1%). Nsukka autonomous community had higher species diversity than Obimo. Allele specific amplification confirmed dengue vectors, Aedes aegypti and Aedes albopictus species on a 2% agarose gel. Since the most recent re-emergence of arboviral diseases is closely associated with Aedes species, findings of this study, therefore, give further evidence about the presence of potential arboviral vectors in Nigeria and describe the role of a simple PCR in discriminating some. Further entomological studies should integrate PCR assays in mosquito vector surveillance.


Sign in / Sign up

Export Citation Format

Share Document