scholarly journals Novel Validated Analytical Method Based on Potentiometric Transduction for the Determination of Citicoline Psychostimulant/Nootropic Agent

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3512
Author(s):  
Ayman H. Kamel ◽  
Abd El-Galil E. Amr ◽  
Hoda R. Galal ◽  
Abdulrahman A. Almehizia

Herein, a novel validated potentiometric method is presented for the first time for citicoline determination. The method is based on measuring the potential using new constructed citicoline electrodes. The electrodes are based on the use of citicolinium/phosphomolybdate [Cit]2[PM] (sensor I) and citicolinium/tetraphenylborate [Cit][TPB] (sensor II) ion association complexes. These sensory materials were dispersed in plasticized polyvinyl chloride (PVC) polymeric membranes. The sensors revealed a Nernstian response with the slopes 55.9 ± 1.8(r2 = 0.9994) and 51.8 ± 0.9 (r2 = 0.9991) mV/decade over a linearity range of 6.3 × 10−6–1.0 × 10−3 and 1.0 × 10−5–1.0 × 10−3 M and detection limits of 3.16 × 10−6 and 7.1 × 10−6 M for sensors I and II, respectively. To ensure the existence of monovalent citicoline, all measurements were performed in 50 mM acetate buffer at pH 3.5. All presented electrodes showed good performance characteristics such as rapid response, good selectivity, high potential-stability and long life-span. Method verification and validation in terms of response linearity, quantification limit, accuracy, bias, trueness, robustness, within-day variability and between-days variability were evaluated. The method was introduced for citicoline determination in different pharmaceutical formulations and compared with the standard high performance liquid chromatography (HPLC) method.

2012 ◽  
Vol 1 (8) ◽  
pp. 193-198 ◽  
Author(s):  
Chusena Narasimharaju Bhimanadhuni ◽  
Devala Rao Garikapati ◽  
Pasupuleti Usha

A Simple, efficient and reproducible reverse phase high performance liquid chromatographic method was developed and validated for the Simultaneous determination of Escitalopram oxalate and Clonazepam in combined dosage form. The separation was effected on a Hypersil ODS C18 column (250mm X 4.6mm; 5µ) using a mobile phase mixture of buffer and acetonitrile in a ratio of 50:50 v/v at a flow rate of 1.0ml/min. The detection was made at 240nm. The retention time of Escitalopram oxalate and Clonazepam was found to be 2.840± 0.007min and 4.007±0.006 min. Calibration curve was linear over the concentration range of 20-120µg/ml and 1-6µg/ml for Escitalopram oxalate and Clonazepam. All the analytical validation parameters were determined and found in the limit as per ICH guidelines, which indicates the validity of the method. The developed method is also found to be precise, accurate, specific, robust and rapid for the simultaneous determination of Escitalopram oxalate and Clonazepam in tablet dosage forms.DOI: http://dx.doi.org/10.3329/icpj.v1i8.11249 International Current Pharmaceutical Journal 2012, 1(8): 193-198 


2021 ◽  
Vol 104 (4) ◽  
pp. 57-68
Author(s):  
V.G. Kamani ◽  
◽  
M. Sujatha ◽  
G.B. Daddala ◽  
◽  
...  

This study reports for the first time about a stability indicating RP-HPLC method for analysis of darolutamide and its impurities 1, 2, and 3 in bulk and formulations. The separation was achieved on Phenomenex column with Luna C18 (250 mm × 4.6 mm, 5 μm) as stationary phase, and 50 mM ammonium acetate: methanol solution 15:80 (v/v) at pH 5.2 as mobile phase at 1.0 mL/min flow rate. UV detection was carried at wavelength of 239 nm. In these conditions the retention time of darolutamide and its impurities 1, 2, and 3 was 7.05, 8.90, 4.63 and 5.95 min, respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability, and robustness. Forced degradation study was done through exposure of the analyte to five different stress conditions and the % degradation was small in all degradation condition. The proposed method can separate and estimate the drug and its impurities in pharmaceutical formulations. Hence, the developed method was suitable for the quantification of darolutamide and can separate and analyse impurities 1, 2, and 3


Author(s):  
Abrar Ahmed ◽  
Tayyaba Mahtab ◽  
Sumaiyya Saleem

Midostaurin is a multi-targeted protein kinase inhibitor that has been used for the treatment of acute myeloid leukemia.  Here, a rapid and precise reverse phase high-performance liquid chromatographic method has been developed for the validation of midostaurin, in its API form as well as in capsule dosage form. Chromatography was carried out on a X-Bridge C18 (4.6 x 250 mm, 5 µm) column using a mixture of methanol: water (75:25% v/v) as the mobile phase at a flow rate of 1.0 mL/min, the detection was carried out at 243nm and the retention time of the midostaurin was found to be 3.155. The method produce linear responses in the concentration range of 10-50 µg/mL of midostaurin. The method precision for the determination of assay was below 2.0 % RSD. The LOD and LOQ values obtained were 1.2 µg/mL and 3.8 µg/mL respectively. There were no significant changes observed upon changing chromatographic conditions indicating the method to be robust. Therefore this validated method can be useful in the quality control of bulk and pharmaceutical formulations of midostaurin. 


2011 ◽  
Vol 8 (4) ◽  
pp. 1958-1964 ◽  
Author(s):  
H. R. Prajapati ◽  
P. N. Raveshiya ◽  
J. M. Prajapati

A reversed phase high performance liquid chromatographic (RP–HPLC) method was developed and subsequently validated for the determination of atomoxetine hydrochloride in bulk and pharmaceutical formulation. The separation was done by a PerkinElmer Brownlee analytical C8 column (260 mm x 4.6 mm, 5 µm) using methanol: 50 mM KH2PO2buffer (PH adjusted to 6.8 with 0.1 M NaOH), 80:20 v/v as an eluent. UV detection was performed at 270 nm at a flow rate 1.0 mL/min. The validation of the method was performed, and specificity, reproducibility, precision accuracy and ruggedness were confirmed. The correlation coefficient was found to be 0.997 for atomoxetine hydrochloride. The recovery was in the range of 99.94 to 100.98% and limit of quantification was found to be 5.707 µg/mL. The method is simple, rapid, selective and economical too and can be used for the routine analysis of drug in pharmaceutical formulations.


2008 ◽  
Vol 5 (s2) ◽  
pp. 1117-1122 ◽  
Author(s):  
B. Prasanna Kumar Reddy ◽  
Y. Ramanjaneya Reddy

A simple, selective, accurate reverse phase-high performance liquid chromatographic (RP-HPLC) method was developed and validated for the analysis of sildenafil citrate in pharmaceutical formulations. Chromatographic separation achieved isocratically on a C18column (Use Inertsil C18, 5μ , 150 mm x 4.6 mm) utilizing a mobile phase of acetonitrile/phosphate buffer (70:30, v/v, pH 7.0) at a flow rate of 0.8 mL/m with UV detection at 228 nm. The retention time was 4.087. The method is accurate (99.15-101.85%), precise (intra-day variation 0.13-1.56% and inter-day variation 0.30-1.60%) and linear within range 0.1-30 μg/mL (R2=0.999) concentration and was successfully used in monitoring left over drug. The detection limit of sildenafil citrate at a signal-to-noise ratio of 3 was 1.80 ng/mL in human plasma while quantification limit in human serum was 5.60 ng/mL. The proposed method is applicable to stability studies and routine analysis of sildenafil citrate in pharmaceutical formulations as well as in human plasma samples.


1981 ◽  
Vol 64 (4) ◽  
pp. 864-869 ◽  
Author(s):  
John G Hoogerheide ◽  
Suzanne H Strusiak ◽  
Carlo R Taddei ◽  
Edward R Townley ◽  
Bruce E Wyka

Abstract A simple stability-indicating high performance liquid chromatographic (HPLC) method has been developed which separates clotrimazole from impurities and decomposition products in bulk drugs, creams, tablets, and solutions. Average recovery data for drug substance added to placebos were: tablet, 99.8%; solution, 99.5%; and cream, 100.0%. Average reproducibilities (RSD) on drug substance and formulations were: drug substance, 1.3%; tablets, 1.8%; solutions, 1.1%; and creams, 0.6%. HPLC assay results for both fresh and degraded samples agree with USP XX titration assay results. The method allows for the simultaneous determination of (o-chlorophenyl)-diphenylmethanol hydrolysis product impurity.


2012 ◽  
Vol 40 (2) ◽  
pp. 109 ◽  
Author(s):  
Izabela RYCHLINSKA ◽  
Slawomira NOWAK

A simple, fast method of high-performance liquid chromatography for the determination and quantification of arbutin and hydroquinone in many different raw materials was developed and validated. The optimum conditions for the separation and detection of these two constituents were achieved on a LiChro-CARD 125-4 Superspher®100 RP-18 column with the water-methanol (gradient elution) mobile phase and recorded at 289 nm. The purities of peaks were verified by PDA analysis of impurities. The results of validation have shown that the HPLC method is stable and accurate for the simultaneous determination of arbutin and hydroquinone in extracts from various plants. The developed method gave a good sensitivity (LOD 1µg/ml for arbutin and 0.49 µg/ml for hydroquinone) with linearity R2 >0.9993 (for both). The relative standard deviation of the method was less than 2.53% for intra-day assays and 3.23% for inter-day assay, the accuracy of the recovery test ranged from 98.96% to 106.4%. This method was used in comparative qualitative analysis of arbutin and hydroquinone in 16 different raw materials from families Lamiaceae, Ericacaeae, Saxifragaceae, Rosaceae. The content of arbutin in B. ciliata, B. cordifolia and Ledum palustre was examined for the first time.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Safwan Ashour ◽  
Nuha Kattan

A sensitive and precise RP-HPLC method has been developed for the simultaneous estimation of clidinium bromide (CDB) and chlordiazepoxide (CDZ) in pure and pharmaceutical formulations. The separation was achieved on a Nucleodur C8 ( mm i.d., 5 μm particle size) column at 25°C. CH3CN-MeOH-NH4OAc 0.1M (30 : 40 : 30, v/v/v) was used as the mobile phase at a flow rate of 1.0 mL min−1 and detector wavelength at 218 nm. Almotriptan (ALT) was used as internal standard. The validation of the proposed method was carried out for linearity, accuracy, precision, LOD, LOQ, and robustness. The method showed good linearity in the ranges of 2.5–300.0 and 3.0–500.0 μg mL−1 for CDB and CDZ, respectively. The percentage recovery obtained for CDB and CDZ was 100.40–103.38 and 99.98–105.59%, respectively. LOD and LOQ were 0.088 and 0.294 μg mL−1 for CDB and 0.121 and 0.403 μg mL−1 for CDZ, respectively. The proposed method was successfully applied to the determination of CDB and CDZ in combined dosage forms and the results tallied well with the label claim.


2014 ◽  
Vol 4 ◽  
pp. 40
Author(s):  
Safila Naveed ◽  

A simple, rapid, isocratic, high-performance liquid chromatography (RP-HPLC) method has been developed for the first time for simultaneous determination of ACE inhibitors (captopril, lisinopril and enalapril) and diclofenac sodium in bulk drugs, pharmaceutical products and human serum.


2011 ◽  
Vol 94 (6) ◽  
pp. 1785-1790 ◽  
Author(s):  
Gislaine Kuminek ◽  
Hellen K Stulzer ◽  
Monika P Tagliari ◽  
Paulo R Oliveira ◽  
Larissa S Bernardi ◽  
...  

Abstract An HPLC method was developed and validated for the simultaneous determination of buclizine, tryptophan, pyridoxine, and cyanocobalamin in pharmaceutical formulations. The chromatographic separation was carried out on an RP-C18 column using a mobile phase gradient of methanol, 0.015 M phosphate buffer (pH 3.0), and 0.03 M phosphoric acid at a flow rate of 1.0 mL/min and UV detection at 230, 280, and 360 nm, respectively, for buclizine, tryptophan, pyridoxine, and cyanocobalamin. The method validation yielded good results with respect to linearity (r > 0.999), specificity, precision, accuracy, and robustness. The RSD values for intraday and interday precision were below 1.82 and 0.63%, respectively, and recoveries ranged from 98.11 to 101.95%. The method was successfully applied for the QC analysis of buclizine, tryptophan, pyridoxine, and cyanocobalamin in tablets and oral suspension.


Sign in / Sign up

Export Citation Format

Share Document