scholarly journals Lysosomotropic Features and Autophagy Modulators among Medical Drugs: Evaluation of Their Role in Pathologies

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5052
Author(s):  
Tatiana A. Korolenko ◽  
Thomas P. Johnston ◽  
Vaclav Vetvicka

The concept of lysosomotropic agents significantly changed numerous aspects of cellular biochemistry, biochemical pharmacology, and clinical medicine. In the present review, we focused on numerous low-molecular and high-molecular lipophilic basic compounds and on the role of lipophagy and autophagy in experimental and clinical medicine. Attention was primarily focused on the most promising agents acting as autophagy inducers, which offer a new window for treatment and/or prophylaxis of various diseases, including type 2 diabetes mellitus, Parkinson’s disease, and atherosclerosis. The present review summarizes current knowledge on the lysosomotropic features of medical drugs, as well as autophagy inducers, and their role in pathological processes.

Author(s):  
Nermien Abd El Rahman Ibraheim ◽  
Fatema El Zahraa Sayed Bukhary ◽  
Yehia Zakareia Mahmoud ◽  
Mahmoud Ragab Mohamed ◽  
Salama Rabei Abdel-Rahim

2020 ◽  
Vol 26 ◽  
Author(s):  
Margarita A. Sazonova ◽  
Anastasia I. Ryzhkova ◽  
Vasily V. Sinyov ◽  
Marina D. Sazonova ◽  
Tatiana V. Kirichenko ◽  
...  

Background: The present review article considers some chronic diseases of vascular and metabolic genesis, the causes of which may be mitochondrial dysfunction. Very often, in the long course of the disease, complications may occur, leading to myocardial infarction or ischemic stroke and as a result, death.In particular, a large percentage of human deaths nowadays belongs to cardiovascular diseases such as coronary heart disease (CHD), arterial hypertension, cardiomyopathies and type 2 diabetes mellitus. Objective: The aim of the present review was the analysis of literature sources, devoted to an investigation of a link of mitochondrial DNA mutations with chronic diseases of vascular and metabolic genesis, Results: The analysis of literature indicates the association of the mitochondrial genome mutations with coronary heart disease, type 2 diabetes mellitus, hypertension and various types of cardiomyopathies. Conclusion: The detected mutations can be used to analyze the predisposition to chronic diseases of vascular and metabolic genesis. They can also be used to create molecular-cell models necessary to evaluate the effectiveness of drugs developed for treatment of these pathologies. MtDNA mutations associated withthe absence of diseases of vascular and metabolic genesis could be potential candidates for gene therapy of diseases of vascular and metabolic genesis.


2018 ◽  
Vol 15 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Sayantan Nath ◽  
Sambuddha Das ◽  
Aditi Bhowmik ◽  
Sankar Kumar Ghosh ◽  
Yashmin Choudhury

Background:Studies pertaining to association of GSTM1 and GSTT1 null genotypes with risk of T2DM and its complications were often inconclusive, thus spurring the present study.Methods:Meta-analysis of 25 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in determining the risk for T2DM and 17 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in development of T2DM related complications were conducted.Results:Our study revealed an association between GSTM1 and GSTT1 null polymorphism with T2DM (GSTM1; OR=1.37;95% CI =1.10-1.70 and GSTT1; OR=1.29;95% CI =1.04-1.61) with an amplified risk of 2.02 fold for combined GSTM1-GSTT1 null genotypes. Furthermore, the GSTT1 null (OR=1.56;95%CI=1.38-1.77) and combined GSTM1-GSTT1 null genotypes (OR=1.91;95%CI=1.25- 2.94) increased the risk for development of T2DM related complications, but not the GSTM1 null genotype. Stratified analyses based on ethnicity revealed GSTM1 and GSTT1 null genotypes increase the risk for T2DM in both Caucasians and Asians, with Asians showing much higher risk of T2DM complications than Caucasians for the same. </P><P> Discussion: GSTM1, GSTT1 and combined GSTM1-GSTT1 null polymorphism may be associated with increased risk for T2DM; while GSTT1 and combined GSTM1-GSTT1 null polymorphism may increase the risk of subsequent development of T2DM complications with Asian population carrying an amplified risk for the polymorphism.Conclusion:Thus GSTM1 and GSTT1 null genotypes increases the risk for Type 2 diabetes mellitus alone, in combination or with regards to ethnicity.


2021 ◽  
Vol 22 (7) ◽  
pp. 3566
Author(s):  
Chae Bin Lee ◽  
Soon Uk Chae ◽  
Seong Jun Jo ◽  
Ui Min Jerng ◽  
Soo Kyung Bae

Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.


Sign in / Sign up

Export Citation Format

Share Document