scholarly journals In Vitro and In Silico Evaluation of Anticancer Activity of New Indole-Based 1,3,4-Oxadiazoles as EGFR and COX-2 Inhibitors

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5190
Author(s):  
Belgin Sever ◽  
Mehlika Dilek Altıntop ◽  
Ahmet Özdemir ◽  
Gülşen Akalın Çiftçi ◽  
Doha E. Ellakwa ◽  
...  

Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are crucial targetable enzymes in cancer management. Therefore, herein, new 2-[(5-((1H-indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(thiazol/benzothiazol-2-yl)acetamides (2a–i) were designed and synthesized as EGFR and COX-2 inhibitors. The cytotoxic effects of compounds 2a–i on HCT116 human colorectal carcinoma, A549 human lung adenocarcinoma, and A375 human melanoma cell lines were determined using MTT assay. 2-[(5-((1H-Indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(6-ethoxybenzothiazol-2-yl)acetamide (2e) exhibited the most significant anticancer activity against HCT116, A549, and A375 cell lines with IC50 values of 6.43 ± 0.72 μM, 9.62 ± 1.14 μM, and 8.07 ± 1.36 μM, respectively, when compared with erlotinib (IC50 = 17.86 ± 3.22 μM, 19.41 ± 2.38 μM, and 23.81 ± 4.17 μM, respectively). Further mechanistic assays demonstrated that compound 2e enhanced apoptosis (28.35%) in HCT116 cells more significantly than erlotinib (7.42%) and caused notable EGFR inhibition with an IC50 value of 2.80 ± 0.52 μM when compared with erlotinib (IC50 = 0.04 ± 0.01 μM). However, compound 2e did not cause any significant COX-2 inhibition, indicating that this compound showed COX-independent anticancer activity. The molecular docking study of compound 2e emphasized that the benzothiazole ring of this compound occupied the allosteric pocket in the EGFR active site. In conclusion, compound 2e is a promising EGFR inhibitor that warrants further clinical investigations.

Author(s):  
Asaf Evrim Evren ◽  
Leyla Yurttaş ◽  
Büşra Ekselli ◽  
Mehmet Onur Aksoy ◽  
Gülşen Akalin-Çiftçi

Background:: Recently, researchers have been warning about the increased mortality of the various cancer types. Also, the lung adenocarcinoma and the glioma types are burning issues for the world's health due to late or wrong diagnosis and/or insufficient treatment methods. For this purpose, our research group designed and synthesized novel 4,5-dimethyl thiazole-hydrazone derivatives which were tested against cancer and normal cell lines to understand the structure-activity relationship (SAR). Method:: The lead compounds were obtained by reacting 2-(substituted aryl-2-ylmethylene)hydrazin-1-carbothioamide with 3-chloro-2-butanone derivatives. The structural elucidation of the compounds was performed by 1H-NMR, 13C-NMR, and LC/MS-IT-TOF spectral and elemental analyses. The synthesized compounds were tested in vitro for the anticancer activity against A549 human lung adenocarcinoma and C6 rat glioma cells and investigated for which pathway to induce cell death. Also, the docking study of the active compounds was achieved to understand the SAR. Result and Discussion:: The targeted compounds (2a-2l) were synthesized successfully above 70% yields, and the analysis findings proved their purity. In general, the results of activity studies displayed significant effects against at least one cell line, except compounds 2e (indol-3-yl) and 2h (4-dimethylaminophenyl). Furthermore, compounds 2b and 2f displayed potential anticancer activity. With the help of molecular docking study, a potential selectivity of compound 2f was observed for type II protein kinase. On the other hand, compound 2b interacted with the active site nearly the same as Dasatinib. Therefore, these two compounds could be used as a base on developing selective anticancer drugs. Conclusion:: Pyridin-2-yl (2b) derivative was found to be a favorable molecule with high anticancer potency against C6 and A549 cell lines. Additionally, 1-naphthyl (2f) derivative was a worthy compound for potential selectivity. In future studies, it will be our priority to focus on developing derivatives of these two compounds (2b and 2f) and elucidate their mechanisms.


2019 ◽  
Vol 19 (3) ◽  
pp. 310-322
Author(s):  
Amany S. Mostafa ◽  
Waleed A. Bayoumi ◽  
Mohamed El-Mesery ◽  
Abdelaziz Elgaml

Background: Two series of 3,4-dihydropyrimidin-2(1H)-one derivatives were designed based on the main structural features characterizing reported anticancer compounds with potent VEGFR-2 inhibiting activity. Methods: All the target compounds were synthesized and investigated for their in vitro anticancer activity using MTT assay and NCI protocol. The most active compounds were further investigated for the VEGFR-2 inhibiting activity using enzyme inhibition assay. Results: Of these derivatives, compound 8b possessed significant activity against Caco-2 (IC50 of 24.9 µM) and MCF7 (IC50 of 29.4 µM), compound 10 showed excellent potency against HCT-116 (IC50 of 32.6 µM), HEPG2 (IC50 of 16.4 µM) and MCF7 (IC50 of 32.8 µM), while compound 11b exhibited moderate anticancer activity towards MCF7 (IC50 of 41.7µM). Both 8b and 10 exhibited good potency regarding the inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2), with an IC50 of 14.00 and 21.62 nM, respectively. Conclusion: The activity was rationalized based on molecular docking study that supported their VEGFR-2 inhibitory activity; as indicated by their favorable binding with the active site.


2018 ◽  
Vol 18 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Shabnam Farzaneh ◽  
Elnaz Zeinalzadeh ◽  
Bahram Daraei ◽  
Soraya Shahhosseini ◽  
Afshin Zarghi

Background: Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective: Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Methods: Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results: In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). Conclusion: A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents.


2019 ◽  
Vol 35 (2) ◽  
pp. 723-731
Author(s):  
Weerachai Phutdhawong ◽  
Sopita Rattanopas ◽  
Jitnapa Sirirak ◽  
Thongchai Taechowisan ◽  
Waya S. Phutdhawong

Azepinobisindole derivatives, the isomeric Iheyamine skeleton, was prepared and its anticancer activity evaluation were investigated against two human cancer cell lines, Hepatocellular carcinoma (HepG2) and human cervical cancer line (Hela) as well as the normal cell line (Vero cell line) using MTT assay. The anticancer activity results indicated that 2-methoxy-5-methyl-5H-azepino[2,3-b:4,5-bʹ]diindole was the most active derivative against tested cell lines. Additionally, molecular docking study in silico the possible inhibitory effect of cyclin-dependent kinase 2 (CDK2) by the azepinoindole revealed that all synthesized compounds fit well in the binding cavity of CDK2.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Mohyeddin Assali ◽  
Murad Abualhasan ◽  
Hadeel Sawaftah ◽  
Mohammed Hawash ◽  
Ahmed Mousa

Series of diaryl-based pyrazole and triazole derivatives were designed and synthesized in a facile synthetic approach in order to produce selective COX-2 inhibitor. These series of derivatives were synthesized by different reactions like Vilsmeier–Haack reaction and click reaction. In vitro COX-1 and COX-2 inhibition studies showed that five compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in 0.551–0.002 μM range. In the diarylpyrazole derivatives, compound 4b showed the best inhibitory activity against COX-2 with IC50 = 0.017 μM as one of the N-aromatic rings was substituted with sulfonamide and the other aromatic ring was unsubstituted. However, when the N-aromatic ring was substituted with sulfonamide and the other aromatic ring was substituted with sulfone (compound 4d), best COX-2 selectivity was achieved (IC50 = 0.098 μM, SI = 54.847). In the diaryltriazole derivatives, compound 15a showed the best inhibitory activity in comparison to all synthesized compounds including the reference celecoxib with IC50 = 0.002 μM and SI = 162.5 as it could better fit the extra hydrophobic pocket which is present in the COX-2 enzyme. Moreover, the docking study supports the obtained SAR data and binding similarities and differences on both isozymes.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1066 ◽  
Author(s):  
Mohamed El-Naggar ◽  
Hanan A. Sallam ◽  
Safaa S. Shaban ◽  
Salwa S. Abdel-Wahab ◽  
Abd El-Galil E. Amr ◽  
...  

A new series of 5-(3,5-dinitrophenyl)-1,3,4-thiadiazole derivatives were prepared and evaluated for their in vitro antimicrobial, antitumor, and DHFR inhibition activity. Compounds 9, 10, 13, and 16 showed strong and broad-spectrum antimicrobial activity comparable to Amoxicillin and Fluconazole as positive antibiotic and antifungal controls, respectively. Compounds 6, 14, and 15 exhibited antitumor activity against four human cancer cell lines, CCRF-CEM leukemia, HCT-15 colon, PC-3 prostate, and UACC-257 melanoma cell lines using Doxorubicin as a reference drug. Compounds 10, 13, 14, and 15 proved to be the most active DHFR inhibitors with an IC50 range of 0.04 ± 0.82–1.00 ± 0.85 µM, in comparison with Methotrexate (IC50 = 0.14 ± 1.38 µM). The highly potent DHFR inhibitors shared a similar molecular docking mode and made a critical hydrogen bond and arene‒arene interactions via Ser59 and Phe31 amino acid residues, respectively.


2018 ◽  
Vol 21 (2) ◽  
pp. 138-148 ◽  
Author(s):  
Sanal Dev ◽  
Sunil. R. Dhaneshwar ◽  
Bijo Mathew

Aim and Objective: For the development of new class of anticancer agents, a series of novel 2-amino-3-cyanopyridine derivatives were designed from virtual screening with Glide program by setting Topoisomerase II as the target. Materials and Methods: The top ranked ten molecules from the virtual screening were synthesized by microwave assisted technique and investigated for their cytotoxic activity against MCF-7 and A- 549 cell lines by using sulforhodamine B assay method. Results: The most active compound 2-amino-4-(3,5-dibromo-4-hydroxyphenyl)-6-(2,4- dichlorophenyl) nicotinonitrile (CG-5) showed significant cytotoxic profile with (LC50 = 97.1, TGI = 29.9 and GI50 = <0.1 µM) in MCF-7 and (LC50= 93.0, TGI= 50.0 and GI50= <7 µM) in A-549 cell lines. A molecular docking study was performed to explore the binding interaction of CG-5with the active site of Topoisomerase II. Conclusion: It can be concluded that halogen substituent pyridine ring was benefit for cytotoxicity.


2017 ◽  
Vol 17 (3) ◽  
pp. 464-470 ◽  
Author(s):  
Sridevi Gorle ◽  
Suresh Maddila ◽  
Surya Maddila ◽  
Kovashnee Naicker ◽  
Moganavelli Singh ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 446
Author(s):  
Tarfah Al-Warhi ◽  
Mohamed Said ◽  
Mahmoud El Hassab ◽  
Nada Aljaeed ◽  
Hazem Ghabour ◽  
...  

In connection with our research program concerning development of novel effective benzimidazole-based anticancer candidates, herein we describe a new unexpected synthetic route to obtain a series of 2–((imidazole/benzimidazol2–yl)thio)1–arylethanones endowed with promising anti-breast cancer and Cyclin-dependent kinase 2 (CDK2) inhibitory activities. Contrary to expectations, products for the reaction of 2–mercaptoimidazole/benzimidazole 2a,b with β–keto esters 6a–c were unambiguously assigned as 2–((imidazol/benzimidazol2–yl)thio)1–arylethanones 10a–f based on NMR spectroscopy and single-crystal X-ray crystallographic analyses. In vitro anticancer activities for herein reported imidazole/benzimidazoles 10a–f were assessed through a cell-based assay against human breast cancer T4–7D and MCF–7 cell lines. Benzimidazoles 10d–f exerted better anti-proliferative action towards T4–7D and MCF–7 cell lines than their corresponding imidazole counterparts 10a–c. Furthermore, a molecular docking study suggested CDK2 kinase as a potential enzymatic target for benzimidazoles 10d–f, and investigated their possible binding pattern and interactions within CDK2 active site. Thereafter, benzimidazoles 10d–f were in vitro examined for their CDK2 inhibitory action, where they exerted good activity. Finally, several key ADME and druglikeness properties were predicted by the SwissADME online tool. Interestingly, benzimidazoles 10d–f were found to have no violations in all druglikeness rules (Veber, Lipinski, Ghose, Muegge, and Egan). In addition, they had neither PAINS nor structural alerts (Brenks). In conclusion, benzimidazoles 10d–f demonstrated not only a promising anticancer activities but also an acceptable ADME and physicochemical properties especially benzimidazole 10e.


Sign in / Sign up

Export Citation Format

Share Document