scholarly journals Flammability Tests and Investigations of Properties of Lignin-Containing Polymer Composites Based on Acrylates

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5947
Author(s):  
Beata Podkościelna ◽  
Krystyna Wnuczek ◽  
Marta Goliszek ◽  
Tomasz Klepka ◽  
Kamil Dziuba

In this paper flammability tests and detailed investigations of lignin-containing polymer composites’ properties are presented. Composites were obtained using bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.GDA), ethylene glycol dimethacrylate (EGDMA), and kraft lignin (lignin alkali, L) during UV curing. In order to evaluate the influence of lignin modification and the addition of flame retardant compounds on the thermal resistance of the obtained biocomposites, flammability tests have been conducted. After the modification with phosphoric acid (V) lignin, as well as diethyl vinylphosphonate, were used as flame retardant additives. The changes in the chemical structures (ATR-FTIR), as well as the influence of the different additives on the hardness, thermal (TG) and mechanical properties were discussed in detail. The samples after the flammability test were also studied to assess their thermal destruction.

1992 ◽  
Vol 10 (6) ◽  
pp. 470-487 ◽  
Author(s):  
Joseph Green

The flame retardant mechanism described for phosphorus- containing flame retardants includes both a condensed and a vapor phase mechanism depending on the type of phosphorus compound and the polymer. Intumescence is also described. Chemical structures of the flame retardant are shown. Specific applications for red phosphorus, organophosphates, chlorophos phates and bromophosphates are described. The use of triarylphosphates in PVC, modified polyphenylene oxide, and polycarbonate/ABS is described. The chlorophosphates are used in polyurethanes and the bromophosphates in en gineering thermoplastics. Flammability and mechanical properties are given for specific polymers.


2014 ◽  
Vol 634 ◽  
pp. 527-536
Author(s):  
Susana P.B. Sousa ◽  
Maria C.S. Ribeiro ◽  
Paulo R.O. Nóvoa ◽  
Celeste M. Pereira ◽  
António J.M. Ferreira

Unsaturated polyester based composites materials present several improved properties over conventional materials. However, these composites show great sensitivity to high temperatures and poor fire behaviour. In the present study, an effort is undertaken to develop new unsaturated polyester composites with improved fire reaction behaviour by matrix modification with hybrid flame retardant systems based on nanooxides and phosphinates. For this purpose, a series of composite formulations containing different contents and types of both metal oxide nano/micro particles and organic phosphinates were manufactured, with basis on the Taguchi L9 orthogonal array, and tested for fire reaction and mechanical properties. The data treatment was carried out through analyses of variance. Fire reaction properties were analysed and quantified by the vertical flammability test (UL-94), and the mechanical properties were studied by flexural, Shore D, and Charpy impact tests. The results were compared with those obtained for plain resin specimens. Test results revealed that the addition of hybrid flame retardant systems introduced reasonable improvements in at least one fire reaction property. However, it was verified that the filler addition led to a decrease in mechanical properties, probably due to poor matrix-filler adhesion. Further studies are required in order to improve the mix design formulations.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 148 ◽  
Author(s):  
Jian Liu ◽  
Liuliu Wang ◽  
Wei Zhang ◽  
Yanming Han

Phenolic foam composites (PFs) are of substantial interest due to their uniform closed-cell structure, low thermal conductivity, and good thermal insulation performance. However, their disadvantages of a high pulverization rate and poor mechanical properties restrict their application in building exterior insulation. Therefore, the toughening of these composites is necessary. In this paper, poplar fiber was treated with an acetylation reagent, and the acetylated fiber was used to prepare modified phenolic foams (FTPFs); this successfully solved the phenomenon of the destruction of the foam structure due to the agglomeration of poplar fiber in the resin substrate. The foam composites were comprehensively evaluated via the characterization of their chemical structures, surface morphologies, mechanical properties, thermal conductivities, and flame retardant properties. It was found that the compressive strength and compressive modulus of FTPF-5% respectively increased by 28.5% and 37.9% as compared with those of PF. The pulverization ratio was reduced by 32.3%, and the thermal insulation performance and flame retardant performance (LOI) were improved. Compared with other toughening methods for phenolic foam composites, the phenolic foam composites modified with surface-compatibilized poplar fiber offer a novel strategy for the value-added utilization of woody fiber, and improve the toughness and industrial viability of phenolic foam.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1068
Author(s):  
Guoliang Chen ◽  
Jian Liu ◽  
Wei Zhang ◽  
Yanming Han ◽  
Derong Zhang ◽  
...  

Phenolic foams (PFs) are lightweight (<200 kg/m3), high-quality, and inexpensive thermal insulation materials whose heat and fire resistance are much better than those of foam plastics such as polyurethane and polystyrene. They are especially suitable for use as insulation in chemical, petroleum, construction, and other fields that are prone to fires. However, PFs have poor mechanical properties, poor abrasion resistance, and easy pulverization. In this paper, a polyurethane prepolymer was treated with an isocyanate, and then the isocyanate-terminated polyurethane prepolymer and poplar powder were used to prepare modified lignin-based phenolic foams (PUPFs), which improved the abrasion resistance and decreased the pulverization of the foam. The foam composites were comprehensively evaluated by characterizing their chemical structures, surface morphologies, mechanical properties, thermal conductivities, and flame-retardant properties. The pulverization ratio was reduced by 43.5%, and the thermal insulation performance and flame-retardancy (LOI) were improved. Compared with other methods to obtain lignin-based phenolic foam composites with anti-pulverization and flame-retardant properties, the hybrid reinforcement of foam composites with an isocyanate-terminated polyurethane prepolymer and poplar powder offers a novel strategy for an environmentally friendly alternative to the use of woody fibers.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6022-6034 ◽  
Author(s):  
Ruilong Li ◽  
Na Wang ◽  
Zhuyu Bai ◽  
Shaopeng Chen ◽  
Jianbing Guo ◽  
...  

The enhanced toughness of flame-retardant polymer composites is still a big challenge due to the deterioration of their mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document