scholarly journals Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 425
Author(s):  
Thi-Thao-Linh Nguyen ◽  
Van-An Duong ◽  
Dang-Khoa Vo ◽  
Jeongae Jo ◽  
Han-Joo Maeng

Sirolimus is a hydrophobic macrolide compound that has been used for long-term immunosuppressive therapy, prevention of restenosis, and treatment of lymphangioleiomyomatosis. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of sirolimus in both porcine whole blood and lung tissue. Blood and lung tissue homogenates were deproteinized with acetonitrile and injected into the LC-MS/MS system for analysis using the positive electrospray ionization mode. The drug was separated on a C18 reversed phase column with a gradient mobile phase (ammonium formate buffer (5 mM) with 0.1% formic acid and acetonitrile) at 0.2 mL/min. The selected reaction monitoring transitions of m/z 931.5 → 864.4 and m/z 809.5 → 756.5 were applied for sirolimus and ascomycin (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 0.5–50 ng/mL. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in porcine whole blood and lung tissue homogenates, and all values were within acceptable ranges. The method was applied to a pharmacokinetic study to quantitate sirolimus levels in porcine blood and its distribution in lung tissue following the application of stents in the porcine coronary arteries. It enabled the quantification of sirolimus concentration until 2 and 14 days in blood and in lung tissue, respectively. This method would be appropriate for both routine porcine pharmacokinetic and bio-distribution studies of sirolimus formulations.

2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 600
Author(s):  
Iris Fiby ◽  
Marta Magdalena Sopel ◽  
Herbert Michlmayr ◽  
Gerhard Adam ◽  
Franz Berthiller

The Fusarium mycotoxin deoxynivalenol (DON) is a common contaminant of cereals and is often co-occurring with its modified forms DON-3-glucoside (D3G), 3-acetyl-DON (3ADON) or 15-acetyl-DON (15ADON). A stable-isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method for their determination in cereals was developed and validated for maize. Therefore, 13C-labelled D3G was enzymatically produced using 13C-DON and [13C6Glc]-sucrose and used as an internal standard (IS) for D3G, while uniformly 13C labelled IS was used for the other mycotoxins. Baseline separation was achieved for the critical peak pair DON/D3G, while 3ADON/15ADON could not be fully baseline separated after testing various reversed phase, fluorinated phase and chiral LC columns. After grinding, weighing and extracting the cereal samples, the raw extract was centrifuged and a mixture of the four 13C-labelled ISs was added directly in a microinsert vial. The subsequent analytical run took 7 min, followed by negative electrospray ionization and selected reaction monitoring on a triple quadrupole MS. Maize was used as a complex cereal model matrix for validation. The use of the IS corrected the occurring matrix effects efficiently from 76 to 98% for D3G, from 86 to 103% for DON, from 68 to 100% for 15ADON and from 63 to 96% for 3ADON.


1988 ◽  
Vol 34 (4) ◽  
pp. 724-729 ◽  
Author(s):  
M Hariharan ◽  
T VanNoord ◽  
J F Greden

Abstract We describe a rapid, sensitive method for the routine simultaneous determination of nicotine and cotinine in 1 mL of plasma. Extraction in 10-mL screw-capped Teflon tubes with methylene chloride after deproteinization with trichloroacetic acid eliminated emulsion formation. The extract, after evaporation and reconstitution in 30 microL of mobile phase, is injected into a reversed-phase C-18 ion-pair column of an isocratic high-performance liquid-chromatographic unit. Absorbance is monitored at 256 nm. The mobile phase is a citrate-phosphate (30 mmol each per liter) buffer mixture containing 50 mL of acetonitrile and 1 mmol of sodium heptanesulfonate per liter. 2-Phenylimidazole is the internal standard. The detection limit is 1 microgram/L for nicotine and 3 micrograms/L for cotinine. The standard curve is linear from 0 to 700 micrograms/L for both compounds. The average CV for nicotine in the concentration range 0-100 micrograms/L is 6.5%, and that for cotinine in the concentration range 50-700 micrograms/L is 4%.


2011 ◽  
Vol 8 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Rahul C. Gavhane ◽  
Ketan K. Nerurkar ◽  
Ashok M. Kalamkar ◽  
Mitesh R. Patil ◽  
Satish G. Pingale ◽  
...  

A rapid and sensitive LC-MS-MS method for the determination of alverine (ALV) and its major metabolite, monohydroxy alverine (MHA), in human plasma using imipramine as an internal standard was developed and validated. The analytes were extracted from 0.5 mL aliquots of human plasma by solid phase extraction, using oasis cartridge. Chromatographic separation was carried on Thermo Gold C18 column (50 × 4.6 mm, 5 μ) at 30 °C, with isocratic mobile phase, a flow rate of 0.4 mL/min and a total run time of 3.5 min. Detection and quantification were performed using a mass spectrometer in the selected reaction-monitoring mode with positive electrospray ionization atm/z282.3 → 91.11 for alverine,m/z298.3 → 106.9 for mono-hydroxy-alverine, andm/z281.0 → 86.0 for internal standard (IS) respectively. This assay was linear over a concentration range of 0.060-10 ng/mL with a lower limit of quantification of 0.060 ng/mL for both alverine and monohydroxy alverine. The coefficient of variation for the assay precision were <9.18% and <8.44%, the accuracy were >104.66% and >100.38% for alverine and monohydroxy alverine respectively. This method was successfully applied to a pharmacokinetic study after oral administration of alverine citrate 60 mg capsule in healthy male subjects.


2000 ◽  
Vol 65 (10) ◽  
pp. 1677-1682 ◽  
Author(s):  
Marcela Bielavská ◽  
Jiří Kassa

A rapid and sensitive method for simultaneous determination of 3-hydroxytyramine (dopamine), 5-hydroxytryptamine (serotonin) and their metabolites - 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine, 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid) and 5-hydroxyindole-3-acetic acid in the rat brain was developed. Brain samples with the internal standard and heparin were deproteinized by perchloric acid with ethylenediaminetetraacetic acid disodium salt and sodium sulfite. Following homogenization, centrifugation and filtration, the supernatant was directly injected into a reversed-phase HPLC system with coulometric detector. The response of the detected substances was linear in the range 12-700 ng/g of cerebellum homogenate (24-1 400 pg on column). Total recovery of the method was higher than 95%. The method was used for the determination of catecholamines and their metabolites in the chosen part of rat brain following the inhalation exposure to sarin (organophosphate).


2001 ◽  
Vol 8 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Christophe Camilla ◽  
Laurent Mély ◽  
Antoine Magnan ◽  
Brice Casano ◽  
Sabine Prato ◽  
...  

ABSTRACT The ability of flow cytometry to resolve multiple parameters was used in a microsphere-based flow cytometric assay for the simultaneous determination of several cytokines in a sample. The flow cytometer microsphere-based assay (FMBA) for cytokines consists of reagents and dedicated software, specifically designed for the quantitative determination of cytokines. We have made several improvements in the multiplex assay: (i) dedicated software specific for the quantitative multiplex assay that processes data automatically, (ii) a stored master calibration curve with a two-point recalibration to adjust the stored curve periodically, and (iii) an internal standard to normalize the detection step in each sample. Overall analytical performance, including sensitivity, reproducibility, and dynamic range, was investigated for interleukin-4 (IL-4), IL-6, IL-10, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor alpha. These assays were found to be reproducible and accurate, with a sensitivity in the picograms-per-milliliter range. Results obtained with FMBA correlate well with commercial enzyme-linked immunosorbent assay data (r > 0.98) for all cytokines assayed. This multiplex assay was applied to the determination of cytokine profiles in whole blood from atopic and nonatopic patients. Our results show that atopic subjects' blood produces more IL-4 (P = 0.003) and less IFN-γ (P = 0.04) than the blood of nonatopic subjects. However, atopic asthmatic subjects' blood produces significantly more IFN-γ than that of atopic nonasthmatic subjects (P = 0.03). The results obtained indicate that the FMBA technology constitutes a powerful system for the quantitative, simultaneous determination of secreted cytokines in immune diseases.


Sign in / Sign up

Export Citation Format

Share Document