scholarly journals Piperlongumine Analogs Promote A549 Cell Apoptosis through Enhancing ROS Generation

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3243
Author(s):  
Ai-Ling Sun ◽  
Wen-Wen Mu ◽  
Yan-Mo Li ◽  
Ya-Lei Sun ◽  
Peng-Xiao Li ◽  
...  

Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that the strong electrophilicity group at the C2–C3 double bond of PL analogs plays an important role in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring, partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno, such as TrxR, could be irreversibly inhibited by the C2–C3 double bond of PL analogs, and boost intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro cancer apoptosis through the inhibition of TrxR and ROS accumulation.

2018 ◽  
Vol 15 (2) ◽  
pp. 179-207
Author(s):  
Ashaparna Mondal ◽  
Priyankar Paira

Background: Currently ruthenium complexes are immerging as effective anticancer agents due to their less toxicity, better antiproliferative and antimetastatic activity, better stability in cellular environment and most importantly variable oxidation and co-ordination states of ruthenium allows binding this molecule with a variety of ligands. So in past few years researchers have shifted their interest towards organoruthenium complexes having good fluorescent profile that may be applicable for cancer theranostics. Nowadays, photodynamic therapy has become more acceptable because of its easy and effective approach towards killing cancer cells. Objective: Objective of this review article is to shed light on synthesis, characterization, stability and fluorescence studies of various ruthenium [Ru(II) and Ru(III)] complexes and different bioactivity studies conducted with the synthesized compounds to test their candidacy as potent chemotherapeutic agents. Methods: Various heterocyclic ligands containing N,O and S as heteroatom mainly were prepared and subjected to complexation with ruthenium-p-cymene moiety. In most cases [Ru(η6-p-cymene)(µ-Cl)Cl]2 was used as ruthenium precursor and the reactions were conducted in various alcohol medium such as methanol, ethanol or propanol. The synthesized complexes were characterized by 1H NMR and 13C NMR spectroscopy, GC-MS, ESI-MS, elemental analysis and single crystal X-ray crystallography methods. Fluorescence study and stability study were conducted accordingly using water, PBS buffer or DMSO. Stable compounds were considered for cell viability studies. To study the efficacy of the compounds in ROS generation as photosensitizers, in few cases, singlet oxygen quantum yields in presence of light were calculated. Suitable compounds were selected for in vitro & in vivo antiproliferative, anti-invasive activity studies. Result: Many newly synthesized compounds were found to have less IC50 compared to a standard drug cysplatin. Those compounds were also stable preferably in physiological conditions. Good fluorescence profile and ROS generation ability were observed for few compounds. Conclusion: Numerous ruthenium complexes were developed which can be used as cancer theranostic agents. Few molecules were synthesized as photosensitizers which were supposed to generate reactive singlet oxygen species in targeted cellular environment in presence of a particular type of light and thereby ceasing cancer cell growth.


Author(s):  
Fabíola Santos ◽  
Juliana do Vale ◽  
Lucas Santos ◽  
Talita Gontijo ◽  
Graziela Lima ◽  
...  

The present investigation describes the synthesis of novel cinnamides and a bis cinnamate bearing 1,2,3-triazole functionalities and investigation of their antiproliferative and antimetastatic effects on melanoma cells. The necessity for the development of new chemotherapeutic agents for melanoma treatment motivated this work. Sixteen derivatives were obtained with yields ranging from 23-81% and fully characterized by spectroscopic (1H and 13C nuclear magnetic resonance, infrared) and spectrometric high resolution mass spectrometry (HRMS) techniques. The derivatives were in vitro evaluated against B16-F10 murine melanoma cell line. The most effective compound (a bis cinnamate) (6b) reduced the melanoma cell viability, generated cell cycle arrest, and influenced the metastatic behavior of melanoma cells by decreasing migration, invasion, and colony formation. Based on these findings, it is believed that compound 6b may represent an interesting scaffold to be explored toward the development of new antimelanoma agents.


Blood ◽  
2004 ◽  
Vol 104 (4) ◽  
pp. 1145-1150 ◽  
Author(s):  
Mark Levis ◽  
Rosalyn Pham ◽  
B. Douglas Smith ◽  
Donald Small

AbstractPatients with acute myeloid leukemia (AML) harboring internal tandem duplication mutations of the FLT3 receptor (FLT3/ITD mutations) have a poor prognosis compared to patients lacking such mutations. Incorporation of FLT3 inhibitors into existing chemotherapeutic regimens has the potential to improve clinical outcomes in this high-risk group of patients. CEP-701, an indolocarbazole-derived selective FLT3 inhibitor, potently induces apoptosis in FLT3/ITD-expressing cell lines and primary leukemic blasts. We conducted a series of in vitro cytotoxicity experiments combining CEP-701 with chemotherapy using the FLT3/ITD-expressing cell lines MV4-11 and BaF3/ITD as well as a primary blast sample from a patient with AML harboring a FLT3/ITD mutation. CEP-701 induced cytotoxicity in a synergistic fashion with cytarabine, daunorubicin, mitoxantrone, or etoposide if used simultaneously or immediately following exposure to the chemotherapeutic agent. In contrast, the combination of pretreatment with CEP-701 followed by chemotherapy was generally antagonistic, particularly with the more cell cycle-dependent agents such as cytarabine. This effect appears to be due to CEP-701 causing cell cycle arrest. We conclude that in FLT3/ITD-expressing leukemia cells, CEP-701 is synergistic with standard AML chemotherapeutic agents, but only if used simultaneously with or immediately following the chemotherapy. These results should be considered when designing trials combining chemotherapy with each of the FLT3 inhibitors currently in clinical development. (Blood. 2004; 104:1145-1150)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2075-2075
Author(s):  
Martine Humbert ◽  
Armelle Goubard ◽  
Colin Mansfield ◽  
Olivier Hermine ◽  
Patrice Dubreuil ◽  
...  

We have identified the small chemical molecule AB8939 as being a structurally novel, synthesized tubulin inhibitor that can circumvent resistance mechanisms known to limit the effectiveness of existing tubulin inhibitors; e.g., P-glycoprotein (Pgp) and myeloperoxidase (MPO) mediated resistance. A series of in vitro preclinical studies provide proof-of-concept that AB8939 has broad applicability as a potent anticancer drug, particularly in tumors of hematopoietic and lymphoid tissues, including acute myeloid leukemia (AML). Regarding mechanism of action, x-ray crystallography demonstrated that AB8939 binds to the colchicine-binding site on the beta-subunit of tubulin. Cell cycle arrest in the G2/M phase was evaluated using HCT116 cells (a human colorectal tumor), treated at various concentrations of AB8939 for 24 hours. It was seen that AB8939 produced a strong mitotic arrest at the sub-micromolar concentration range (90% of cells in G2/M phase at 10 nM), which was of comparable strength to that of established microtubule targeting agents, each at a concentration of 100 nM. Additional assays using cytarabine (Ara-C) resistant MOLM14 AML cells confirmed this activity, also demonstrating dose dependent (2 to 20 nM) G2/M phase cell cycle arrest in patient-derived AML blasts and that G2/M cell cycle arrest lead to cellular death by apoptosis at nanomolar concentrations. The effect of AB8939 (100 nM) on the integrity of the microtubule and actin networks was tested in 3T3NIH cells (murine embryonic fibroblast cell line). AB8939 induced a rapid (within 1 hour) and radical destabilization of the microtubule network but did not affect the actin network. Similarly, destabilization of the microtubule network was observed in human primary cardiomyocytes and primary human lung fibroblast cells treated for 24 hours at 10 to 1000 nM AB8939. Further in vitro analysis showed that AB8939 produces a direct and potent, dose-dependent depolymerization effect (50% inhibition of in vitro microtubule polymerization at around 1 µM, with 100% inhibition at >5 µM). The potential of AB8939 to overcome resistance to chemotherapeutic agents in Pgp-dependent multidrug-resistant cell lines was assessed using the drug-sensitive human sarcoma cell line MES-SA (parental) and its multidrug-resistant counterparts MES-SA/MX2 and MES-SA/Dx5 in a 6-day proliferation/survival assay. AB8939 efficiently inhibited each of these cells with an IC50 ≤10 nM. By comparison, the MES-SA/MX2 and MES-SA/Dx5 cell lines were highly resistant to the chemotherapeutic agents of doxorubicin and vincristine, as compared with the effect on parental cells (IC50 <1.5 - 2.0 µM versus 20 nM, respectively). Additional tests showed that AB8939 is a very poor substrate of Pgp efflux pump, comparable with combretastatin-4, and therefore has the potential to overcome multidrug resistance in cancer patients. The anti-proliferative activity of AB8939 in various hematopoietic tumors and solid tumors was evaluated using a colorimetric cell proliferation and viability assay. AB8939 produced good anti-tumor activity after 72 hours (IC50 of ≤50 nM) in 19 hematopoietic tumor cell lines tested, including AML (3 cell lines), B cell lymphoma (8 cell lines), T cell lymphoma (6 cell lines), and multiple myeloma (2 cell lines). AB8939 also showed good anti-tumor activity after 6 days (IC50 of ≤10 nM) in several solid tumor cell lines, including breast, colon, glioblastoma, head and neck, lung, kidney, melanoma neuroblastoma, ovary, pancreas and prostate cell lines. The therapeutic potential of AB8939 in refractory/resistant AML was investigated further on doxorubicin-resistant AML cell lines (HL60 and U937), doxorubicin being a commonly used AML induction drug and Pgp substrate. AB8939 produced a strong anti-proliferative effect in both cell lines whereas both were resistant to doxorubicin, thus demonstrating AB8939's potential to overcome refractory/resistant AML. Notably, HL60 and U937 are respectively MPO-positive and MPO-negative, indicating that unlike vinca alkaloids (e.g. vincristine or vinblastine) AB8939 it is not deactivated by this myeloid enzyme. These data show that AB8939 is a prolific and highly potent (nanomolar concentrations) Pgp-independent, next-generation microtubule-destabilizer drug for cancer therapy; in particular, difficult to treat hematopoietic tumors such as relapsed/refractory AML. Disclosures Humbert: AB Science: Employment. Goubard:AB Science: Employment. Mansfield:AB Science: Employment, Patents & Royalties. Hermine:AB Science: Membership on an entity's Board of Directors or advisory committees. Dubreuil:AB Science: Employment, Membership on an entity's Board of Directors or advisory committees, Research Funding. AB8939 Study Group:AB Science: Consultancy, Employment.


2019 ◽  
Vol 20 (5) ◽  
pp. 1191 ◽  
Author(s):  
Yanjun Kou ◽  
Jiehua Qiu ◽  
Zeng Tao

Reactive oxygen species (ROS) are involved in many important processes, including the growth, development, and responses to the environments, in rice (Oryza sativa) and Magnaporthe oryzae. Although ROS are known to be critical components in rice–M. oryzae interactions, their regulations and pathways have not yet been completely revealed. Recent studies have provided fascinating insights into the intricate physiological redox balance in rice–M. oryzae interactions. In M. oryzae, ROS accumulation is required for the appressorium formation and penetration. However, once inside the rice cells, M. oryzae must scavenge the host-derived ROS to spread invasive hyphae. On the other side, ROS play key roles in rice against M. oryzae. It has been known that, upon perception of M. oryzae, rice plants modulate their activities of ROS generating and scavenging enzymes, mainly on NADPH oxidase OsRbohB, by different signaling pathways to accumulate ROS against rice blast. By contrast, the M. oryzae virulent strains are capable of suppressing ROS accumulation and attenuating rice blast resistance by the secretion of effectors, such as AvrPii and AvrPiz-t. These results suggest that ROS generation and scavenging of ROS are tightly controlled by different pathways in both M. oryzae and rice during rice blast. In this review, the most recent advances in the understanding of the regulatory mechanisms of ROS accumulation and signaling during rice–M. oryzae interaction are summarized.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Monica Civallero ◽  
Maria Cosenza ◽  
Samantha Pozzi ◽  
Alessia Bari ◽  
Paola Ferri ◽  
...  

Non-Hodgkin lymphomas encompass a heterogeneous group of cancers, with 85–90% arising from B lymphocytes and the remainder deriving from T lymphocytes or NK lymphocytes. These tumors are molecularly and clinically heterogeneous, showing dramatically different responses and outcomes with standard therapies. Deregulated PI3K signaling is linked to oncogenesis and disease progression in hematologic malignancies and in a variety of solid tumors and apparently enhances resistance to antineoplastic therapy, resulting in a poor prognosis. Here, we have evaluated and compared the effects of the pan-PI3K inhibitor BKM120 and the dual PI3K/mTOR inhibitor BEZ235 on mantle, follicular, and T-cell lymphomas. Our results suggest that BKM120 and BEZ235 can effectively inhibit lymphoma cell proliferation by causing cell cycle arrest and can lead to cell death by inducing apoptosis and autophagy mediated by ROS accumulation. Despite great advances in lymphoma therapy after the introduction of monoclonal antibodies, many patients still die from disease progression. Therefore, novel treatment approaches are needed. BKM120 and BEZ235 alone and in combination are very effective against lymphoma cellsin vitro. If further studies confirm their effectiveness in animal models, they may be promising candidates for development as new drugs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaoyan Wang ◽  
Ming Wu ◽  
Xiaolong Zhang ◽  
Feida Li ◽  
Yongyi Zeng ◽  
...  

Abstract Background Photodynamic therapy (PDT), a typical reactive oxygen species (ROS)-dependent treatment with high controllability, has emerged as an alternative cancer therapy modality but its therapeutic efficacy is still unsatisfactory due to the limited light penetration and constant oxygen consumption. With the development of another ROS-dependent paradigm ferroptosis, several efforts have been made to conquer the poor efficacy by combining these two approaches; however the biocompatibility, tumor-targeting capacity and clinical translation prospect of current studies still exist great concerns. Herein, a novel hypoxia-responsive nanoreactor BCFe@SRF with sorafenib (SRF) loaded inside, constructed by covalently connecting chlorin e6 conjugated bovine serum albumin (BSA-Ce6) and ferritin through azobenzene (Azo) linker, were prepared to offer unmatched opportunities for high-efficient PDT and ferroptosis synergistic therapy. Results The designed BCFe@SRF exhibited appropriate size distribution, stable dispersity, excellent ROS generation property, controllable drug release capacity, tumor accumulation ability, and outstanding biocompatibility. Importantly, the BCFe@SRF could be degraded under hypoxia environment to release BSA-Ce6 for laser-triggered PDT, ferritin for iron-catalyzed Fenton reaction and SRF for tumor antioxidative defense disruption. Meanwhile, besides PDT effects, it was found that BCFe@SRF mediated treatment upon laser irradiation in hypoxic environment not only could accelerate lipid peroxidation (LPO) generation but also could deplete intracellular glutathione (GSH) and decrease glutathione peroxidase (GPX4) expression, which was believed as three symbolic events during ferroptosis. All in all, the BCFe@SRF nanoreactor, employing multiple cascaded pathways to promote intracellular ROS accumulation, presented remarkably outstanding antitumor effects both in vitro and in vivo. Conclusion BCFe@SRF could serve as a promising candidate for synergistic PDT and ferroptosis therapy, which is applicable to boost oxidative damage within tumor site and will be informative to future design of ROS-dependent therapeutic nanoplatforms. Graphic abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Shengping Ji ◽  
Yuqian Ma ◽  
Xiaoyan Xing ◽  
Binbin Ge ◽  
Yutian Li ◽  
...  

Multidrug resistance (MDR) of hepatocellular carcinoma (HCC) is a serious problem that directly hinders the effect of chemotherapeutics. In this study, we mainly explore the molecular mechanism of ROS-induced CD13 expression using hepatocarcinoma cells as the research object. We show that the drug of fluorouracil (5FU), epirubicin (EPI) and gemcitabine (GEM) can induce ROS generation, activate Ets2 and promote CD13 expression. Meanwhile, CD13 can activate NRF1 and up-regulate ROS scavenging genes transcription, such as SOD1, GPX1, GPX2 and GPX3, leading to down-regulation of intracellular ROS level and reducing the sensitivity of cells to chemotherapy agent. We also detected the anti-tumor effect of the combination therapy, CD13 inhibitor ubenimex and a variety of conventional anti-cancer drugs, such as 5FU, EPI, GEM, pemetrexed (Pem) and paclitaxel (PTX) were employed in combination. Ubenimex enhances the sensitivity of different chemotherapeutic agents and cooperates with chemotherapeutic agents to suppress tumor growth in vitro and in vivo. In general, overexpression of CD13 can lead to chemotherapy resistance, and CD13 inhibitor can reverse this effect. Combination of chemotherapy agent and ubenimex will become a potential treatment strategy for liver cancer resistance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaqi Chen ◽  
Qiaoya Pan ◽  
Yang Bai ◽  
Xuepeng Chen ◽  
Yi Zhou

Purpose: Despite considerable efforts to improve treatment modalities for cholangiocarcinoma, a common form of malignant tumor, its long-term survival rate remains poor. Hydroxychloroquine (HCQ) is a 4-aminoquinoline derivative antimalarial drug that has antimalarial and autophagy inhibition effects and exhibits comprehensive therapeutic effects on various cancers. In this study, we aimed to explore the anticancer potential and the underlying molecular mechanism of HCQ in cholangiocarcinoma treatment in vitro and in vivo.Methods: Autophagy-related genes (ARGs) were obtained from the Human Autophagy Database and Molecular Signatures Database, and the expression profiles of ARGs were downloaded from the database of The Cancer Genome Atlas. Different expression gene sets were performed using R software. The Gene Ontology and KEGG enrichment analyses were performed to reveal significantly enriched signaling pathways and to identify differentially expressed genes in cholangiocarcinoma tissues. HuCCT-1 and CCLP-1 cells were exposed to different concentrations of HCQ. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8), colony formation, and 5-ethynyl-2′-deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were detected by the Live/Dead cell assay and flow cytometry (FCM). The inhibition of autophagy was observed using fluorescence microscopy. The reactive oxygen species levels were assessed by fluorescence microscopy and flow cytometry. The protein levels were determined by western blot. A cholangiocarcinoma cell line xenograft model was used to evaluate the antitumor activity of HCQ in vivo.Results: Compared with normal tissues, there were 141 ARGs with an aberrant expression in cholangiocarcinoma tissues which were mainly enriched in autophagy-related processes. Inhibition of autophagy by HCQ effectively suppressed cholangiocarcinoma in vitro and in vivo. HCQ inhibited cell proliferation and induced apoptosis and cycle arrest in vitro by increasing ROS accumulation, which was involved in autophagy inhibition. The ROS scavenger reduced l-glutathione distinctly weakened HCQ-induced cell apoptosis and viability inhibition in cholangiocarcinoma cells. In addition, HCQ inhibited growth of cholangiocarcinoma cell line xenograft tumors.Conclusion: HCQ could inhibit cell proliferation and induce apoptosis in cholangiocarcinoma by triggering ROS accumulation via autophagy inhibition, which makes HCQ a potential antitumor drug candidate for cholangiocarcinoma treatment.


Sign in / Sign up

Export Citation Format

Share Document