scholarly journals Nitric oxide — soluble guanylate cyclase — cyclic guanosine monophosphate signaling pathway in the pathogenesis of heart failure and search for novel therapeutic targets

2021 ◽  
Vol 20 (6) ◽  
pp. 3035
Author(s):  
Zh. D. Kobalava ◽  
P. V. Lazarev

Heart failure is a severe disease with an unfavorable prognosis, which requires intensification of therapy and the search for novel approaches to treatment. In this review, the physiological significance of soluble guanylate cyclase-related signaling pathway, reasons for decrease in its activity in heart failure and possible consequences are discussed. Pharmacological methods of stimulating the production of cyclic guanosine monophosphate using drugs with different mechanisms of action are considered. Data from clinical studies regarding their effectiveness and safety are presented. A promising approach is stimulation of soluble guanylate cyclase, which showed beneficial effects in preclinical studies, as well as in the recently completed phase III VICTORIA study.

2019 ◽  
Vol 19 (18) ◽  
pp. 1544-1557 ◽  
Author(s):  
Sijia Xiao ◽  
Qianbin Li ◽  
Liqing Hu ◽  
Zutao Yu ◽  
Jie Yang ◽  
...  

Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


1989 ◽  
Vol 67 (9) ◽  
pp. 1124-1129 ◽  
Author(s):  
Johanne Tremblay ◽  
Pavel Hamet

Since atrial natriuretic factor (ANF) is a natriuretic and vasodilatory hormone, its mechanisms of action expectedly involve so-called negative pathways of cell stimulation, notably cyclic nucleotides. Indeed, the guanylate cyclase–cyclic GMP (cGMP) system appears to be the principal mediator of ANF's action. Specifically, particulate guanylate cyclase, a membrane glycoprotein, transmits ANF's effects, as opposed to the activation of soluble guanylate cyclase by such agents as sodium nitroprusside. The stimulation of particulate guanylate cyclase by ANF manifests several characteristics. One of them is the functional irreversibility of stimulation with its apparent physiological consequences: the extended impact of ANF on diuresis and vasodilation in vivo lasts beyond the duration of increased plasma ANF levels and is accompanied by a prolonged elevation of cGMP. Another characteristic is the parallelism between guanylate cyclase stimulation and increases of cGMP in extracellular fluids. cGMP egression appears to be an active process, yet its physiological implications remain to be uncovered. In heart failure, cGMP continues to reflect augmented ANF levels, suggesting that in this disease, the lack of an ANF effect on sodium excretion is due to a defect distal to cGMP generation. In hypertension, where ANF levels are either normal or slightly elevated, probably secondary to high blood pressure, the ANF responsiveness of the particulate guanylate cyclase–cGMP system, the hypotensive effects, diuresis and natriuresis are exaggerated. The implications of this exaggerated responsiveness of the ANF–cGMP system in the pathophysiology of hypertension and its potential therapeutic connotations remain to be evaluated.Key words: ANF, cGMP, guanylate cyclase, hypertension, heart failure.


1997 ◽  
Vol 273 (2) ◽  
pp. R823-R827 ◽  
Author(s):  
S. A. Davies ◽  
E. J. Stewart ◽  
G. R. Huesmann ◽  
N. J. Skaer ◽  
S. H. Maddrell ◽  
...  

Activation of the nitric oxide (NO) and guanosine 3', 5'-cyclic monophosphate (cGMP) signaling pathway stimulates fluid secretion by the Drosophila melanogaster Malpighian tubule. The neuropeptide cardioacceleratory peptide 2b (CAP2b) has been previously shown to stimulate fluid secretion in this epithelium by elevating intracellular cGMP levels. Therefore, it was of interest to investigate if CAP2b acts through NO in isolated tubules and thus presumably through stimulation of a tubule NO synthase (NOS). We show here by reverse-transcription polymerase chain reaction that Drosophila NOS (dNOS) is expressed in Malpighian tubules. Biochemical assays of NOS activity in whole tubules show that CAP2b significantly stimulates NOS activity. Additionally, fluid secretion and cyclic nucleotide assays show that CAP2b-induced elevation of intracellular cGMP levels and fluid secretion rates are dependent on the activation of a soluble guanylate cyclase. Treatment of tubules with a specific NOS inhibitor abolishes the CAP2b-induced rise in intracellular cGMP levels. These data indicate that CAP2b stimulates NOS and therefore, endogenous NO production, which, in turn, stimulates a soluble guanylate cyclase. This is the first demonstration of stimulation of an endogenous NOS by a defined peptide in Drosophila.


2021 ◽  
Vol 23 (10) ◽  
Author(s):  
Carlo Mario Lombardi ◽  
Giuliana Cimino ◽  
Matteo Pagnesi ◽  
Andrea Dell’Aquila ◽  
Daniela Tomasoni ◽  
...  

Abstract Purpose of Review The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays an important role in the regulation of cardiovascular function, and it is disrupted in heart failure (HF), resulting in decreased protection against myocardial injury. Impaired NO-sGC-cGMP signaling in HF is secondary to reduced NO bioavailability and altered redox state of sGC, which becomes less responsive to NO. The sGC activator cinaciguat increases cGMP levels by direct NO-independent activation of sGC and may be particularly effective in conditions of increased oxidative stress and endothelial dysfunction, and therefore reduced NO levels, at the expense of a greater risk of hypotension. Conversely, sGC stimulators (riociguat and vericiguat) enhance sGC sensitivity to endogenous NO, thus exerting a more physiological action. Recent Findings Clinical trials have suggested the benefit of vericiguat in patients with high-risk HF; in particular, a lower incidence of death from cardiovascular causes or HF hospitalization. Summary Adding vericiguat may be considered in individual patients with HF, and reduced left ventricular ejection fraction (HFrEF) particularly those at higher risk of HF hospitalization.


2018 ◽  
Vol 13 (1) ◽  
pp. 35 ◽  
Author(s):  
Hiroshi Watanabe ◽  

Pulmonary arterial hypertension is a chronic and life-threatening disease that if left untreated is fatal. Current therapies include stimulating the nitric oxide–soluble guanylate cyclase (sGC)–cyclic guanosine monophosphate axis, improving the prostacyclin pathway and inhibiting the endothelin pathway. Phosphodiesterase type 5 inhibitors, such as sildenafil, and the sGC stimulator riociguat are currently used in the treatment of pulmonary arterial hypertension. This article discusses the similarities and differences between phosphodiesterase type 5 inhibitors and sGC stimulator based on pharmacological action and clinical trials, and considers which is better for the treatment of pulmonary arterial hypertension.


Sign in / Sign up

Export Citation Format

Share Document