scholarly journals Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3557
Author(s):  
Rosa Edith Grijalva-Guiza ◽  
Aura Matilde Jiménez-Garduño ◽  
Luis Ricardo Hernández

Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.

Function ◽  
2020 ◽  
Author(s):  
Violeta Cazaña-Pérez ◽  
Pilar Cidad ◽  
Juan F Navarro-González ◽  
Jorge Rojo-Mencía ◽  
Frederic Jaisser ◽  
...  

Abstract Chronic kidney disease (CKD) significantly increases cardiovascular risk. In advanced CKD stages, accumulation of toxic circulating metabolites and mineral metabolism alterations triggers vascular calcification, characterized by vascular smooth muscle cell (VSMC) transdifferentiation and loss of the contractile phenotype. Phenotypic modulation of VSMC occurs with significant changes in gene expression. Even though ion channels are an integral component of VSMC function, the effects of uremia on ion channel remodeling has not been explored. We used an in vitro model of uremia-induced calcification of human aorta smooth muscle cells (HASMC) to study the expression of 92 ion channel subunit genes. Uremic serum induced extensive remodeling of ion channel expression consistent with loss of excitability but different from the one previously associated to transition from contractile to proliferative phenotypes. Among the ion channels tested, we found increased abundance and activity of voltage-dependent K+ channel Kv1.3. Enhanced Kv1.3 expression was also detected in aorta from a mouse model of CKD. Pharmacological inhibition or genetic ablation of Kv1.3 decreased the amount of calcium phosphate deposition induced by uremia, supporting an important role for this channel on uremia-induced VSMC calcification.


2005 ◽  
Vol 33 (11) ◽  
pp. 1546-1554 ◽  
Author(s):  
Hak-Joon Sung ◽  
Suzanne G. Eskin ◽  
Yumiko Sakurai ◽  
Andrew Yee ◽  
Noriyuki Kataoka ◽  
...  

2010 ◽  
Vol 3 (2) ◽  
pp. 109-121 ◽  
Author(s):  
Kurt M. Sowers ◽  
Melvin R. Hayden

Calcific uremic arteriolopathy (CUA)/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.


Sign in / Sign up

Export Citation Format

Share Document