scholarly journals Potential Hydrothermal-Humification of Vegetable Wastes by Steam Explosion and Structural Characteristics of Humified Fractions

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3841
Author(s):  
Wenjie Sui ◽  
Shunqin Li ◽  
Xiaodan Zhou ◽  
Zishan Dou ◽  
Rui Liu ◽  
...  

In this work, steam explosion (SE) was exploited as a potential hydrothermal-humification process of vegetable wastes to deconstruct their structure and accelerate their decomposition to prepare humified substances. Results indicated that the SE process led to the removal of hemicellulose, re-condensation of lignin, degradation of the cellulosic amorphous region, and the enhancement of thermal stability of broccoli wastes, which provided transformable substrates and a thermal-acidic reaction environment for humification. After SE treatment, total humic substances (HS), humic acids (HAs), and fulvic acids (FAs) contents of broccoli samples accounted for up to 198.3 g/kg, 42.3 g/kg, and 166.6 g/kg, and their purification were also facilitated. With the increment of SE severity, structural characteristics of HAs presented the loss of aliphatic compounds, carbohydrates, and carboxylic acids and the enrichment of aromatic structures and N-containing groups. Lignin substructures were proved to be the predominant aromatic structures and gluconoxylans were the main carbohydrates associated with lignin in HAs, both of their signals were enhanced by SE. Above results suggested that SE could promote the decomposition of easily biodegradable matters and further polycondensation, aromatization, and nitrogen-fixation reactions during humification, which were conducive to the formation of HAs.

2014 ◽  
Vol 216 ◽  
pp. 35-38 ◽  
Author(s):  
Cosmin Codrean ◽  
Dragoş Buzdugan ◽  
Ramona Lǎzar ◽  
Viorel Aurel Şerban ◽  
Ion Mitelea

Ni based amorphous alloys with Si and B, which can also, contains Fe and Cr, prepared by rapid solidification, have low melting temperatures. This fact increases their susceptibility to be joined by welding and brazing. The glass forming ability (GFA) is conditioned also by the crystallization delay, due to certain chemical composition of the alloys. The thermal stability of these alloys was revealed by DTA analysis and structural characteristics were investigated by XRD. Applying an annealing at temperatures between 420°C and 540°C, with 30 minutes maintaining time, allowed the investigation of phase occurred during the crystallization and the estimation of the crystalline grains dimensions.


2011 ◽  
Vol 96 (9) ◽  
pp. 1582-1588 ◽  
Author(s):  
N. Jacquet ◽  
N. Quiévy ◽  
C. Vanderghem ◽  
S. Janas ◽  
C. Blecker ◽  
...  

2009 ◽  
Vol 6 (12) ◽  
pp. 1155 ◽  
Author(s):  
H.B. Liu ◽  
G. Carbajal De La Torre ◽  
E. Sosa ◽  
M.A. Espinosa Medina

2009 ◽  
Vol 475 (1-2) ◽  
pp. 151-156 ◽  
Author(s):  
D. Vojtěch ◽  
A. Michalcová ◽  
J. Pilch ◽  
P. Šittner ◽  
J. Šerák ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1805
Author(s):  
Kamila Mizera ◽  
Kamila Sałasińska ◽  
Joanna Ryszkowska ◽  
Maria Kurańska ◽  
Rafał Kozera

Due to the current trends in sustainable development and the reduction in the use of fossil fuels (Green Deal strategy and the circular economy), and thus, the increased interest of the polyurethane industry in polyols derived from renewable sources, it is important to study the impact of these polyols on the flammability of new bioelastomers. The goal of this study was to check the influence of biobased polyols, such as tall oil (TO)-based polyols, soybean oil (SO)-based polyol, and rapeseed oil (RO)-based polyol, on the reduction in the burning and fume emissions of polyurethane and poly(urea)urethane elastomers (EPURs and EPUURs). The thermal stability of these materials was tested using thermogravimetric analysis (TGA). In turn, the flame retardancy and smoke emissions were checked using a cone calorimetry test. The released gases were identified using TGA coupled with Fourier transform infrared (FT-IR) spectroscopy (TGA/FT-IR). Moreover, the morphological and structural characteristics of the char residues were characterized using FT-IR and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The obtained data were compared to the results received for elastomers produced with petroleum substrates. The addition of biobased polyols led to a reduction in the burning as a result of the formation of char, especially RO polyol. Moreover, the TO and RO polyols increased the thermal stability of the elastomers.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


1991 ◽  
Vol 1 (12) ◽  
pp. 1823-1836 ◽  
Author(s):  
M. Bessière ◽  
A. Quivy ◽  
S. Lefebvre ◽  
J. Devaud-Rzepski ◽  
Y. Calvayrac

1994 ◽  
Vol 4 (4) ◽  
pp. 653-657
Author(s):  
B. Bonzi ◽  
M. El Khomssi ◽  
H. Lanchon-Ducauquis

Sign in / Sign up

Export Citation Format

Share Document