scholarly journals Comparative Study of Different Operation Modes of Microbial Fuel Cells Treating Food Residue Biomass

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3987
Author(s):  
Asimina Tremouli ◽  
Theofilos Kamperidis ◽  
Gerasimos Lyberatos

Four multiple air–cathode microbial fuel cells (MFCs) were developed under the scope of using extracts from fermentable household food waste (FORBI) for the production of bioelectricity. The operation of the MFCs was assessed in batch mode, considering each cell individually. Τhe chemical oxygen demand (COD) efficiency was relatively high in all cases (> 85% for all batch cycles) while the electricity yield was 20 mJ/gCOD/L of extract solution. The four units were then electrically connected as a stack, both in series and in parallel, and were operated continuously. Approximately 62% COD consumption was obtained in continuous stack operation operated in series and 67% when operated in parallel. The electricity yield of the stack was 2.6 mJ/gCOD/L of extract solution when operated continuously in series and 0.7 mJ/gCOD/L when operated continuously in parallel.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Ignacio T. Vargas ◽  
Natalia Tapia ◽  
John M. Regan

During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance. Glucose-fed air-cathode reactors inoculated with a rumen-fluid enrichment and wastewater showed higher power densities and soluble chemical oxygen demand (sCOD) removal (Pmax = 824.5 mWm−2; ΔsCOD = 96.1%) than reactors inoculated only with wastewater (Pmax = 634.1 mWm−2; ΔsCOD = 91.7%). Identical anode but different cathode potentials suggest that differences in performance were due to the cathode. Pyrosequencing analysis showed no significant differences between the anodic community structures derived from both inocula but increased relative abundances of Azoarcus and Victivallis species in the cathodic rumen enrichment. Results suggest that this rarely used inoculum for single-chamber MFCs contributed to cathodic biofilm improvements with no anodic biofilm effects.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5116
Author(s):  
Mariagiovanna Minutillo ◽  
Simona Di Micco ◽  
Paolo Di Giorgio ◽  
Giovanni Erme ◽  
Elio Jannelli

Microbial fuel cells (MFCs) have recently attracted more attention in the context of sustainable energy production. They can be considered as a future solution for the treatment of organic wastes and the production of bioelectricity. However, the low output voltage and the low produced electricity limit their applications as energy supply systems. The scaling up of MFCs both by developing bigger reactors with multiple electrodes and by connecting several cells in stacked configurations is a valid solution for improving these performances. In this paper, the scaling up of a single air-cathode microbial fuel cell with an internal volume of 28 mL, has been studied to estimate how its performance can be improved (1523 mW/m3, at 0.139 mA). Four stacked configurations and a multi-electrode unit have been designed, developed, and tested. The stacked MFCs consist of 4 reactors (28 mL × 4) that are connected in series, parallel, series/parallel, and parallel/series modes. The multi-electrode unit consists of a bigger reactor (253 mL) with 4 anodes and 4 cathodes. The performance analysis has point ed out that the multi-electrode configuration shows the lowest performances in terms of volumetric power density equal to 471 mW/m3 at 0.345 mA and volumetric energy density of 624.2 Wh/m3. The stacked parallel/series configuration assures both the highest volumetric power density, equal to 2451 mW/m3 (274.6 µW) at 0.524 mA and the highest volumetric energy density, equal to 2742.0 Wh/m3. These results allow affirming that to increase the electric power output of MFCs, the stacked configuration is the optimal strategy from designing point of view.


2013 ◽  
Vol 864-867 ◽  
pp. 1839-1842
Author(s):  
Xiao Qin Zhao ◽  
Xiao Jie Sun ◽  
Su Na Wei ◽  
Jiang Cheng Liang ◽  
Yang Yang ◽  
...  

Based on the previous studies, this experiment presented a new kind of microbial fuel cells (MFC), single-chamber air cathode microbial fuel cells without proton membrane. After investigating the contrast of substrate changes in microbial fuel cells and simple anaerobic digestion, the analysis results of soluble chemical oxygen demand (SCOD), TP, TN and NH3-N show that: SCOD increase firstly, then decrease, to the end, descend. As a result, we find that SCOD in MFC is lower than that in control device (CD). Throughout the whole reaction period, TP in MFC is lower than that in CD. TN and NH3-N show upward trend after a reaction period.


2014 ◽  
Vol 70 (10) ◽  
pp. 1610-1616 ◽  
Author(s):  
Huanan Wu ◽  
Min Lu ◽  
Lin Guo ◽  
Leonard Guan Hong Bay ◽  
Zheng Zhang ◽  
...  

Polyelectrolyte–single wall carbon nanotube (SCNT) composites are prepared by a solution-based method and used as metal-free cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). In this study, two types of polyelectrolytes, polydiallyldimethylammonium chloride (PDDA) and poly[bis(2-chloroethyl)ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] (PEPU) are applied to decorate the SCNTs and the resulting catalysts exhibit remarkable catalytic ability toward ORR in MFC applications. The enhanced catalytic ability could be attributed to the positively charged quaternary ammonium sites of polyelectrolytes, which increase the oxygen affinity of SCNTs and reduce activation energy in the oxygen reduction process. It is also found that PEPU–SCNT composite-based MFCs show efficient performance with maximum power density of 270.1 mW m−2, comparable to MFCs with the benchmark Pt/C catalyst (375.3 mW m−2), while PDDA–SCNT composite-based MFCs produce 188.9 mW m−2. These results indicate that PEPU–SCNT and PDDA–SCNT catalysts are promising candidates as metal-free cathode catalysts for ORR in MFCs and could facilitate MFC scaling up and commercialization.


2009 ◽  
Vol 24 (10) ◽  
pp. 3144-3147 ◽  
Author(s):  
Christian J. Sund ◽  
Michael S. Wong ◽  
James J. Sumner

2008 ◽  
Vol 78 (5) ◽  
pp. 873-880 ◽  
Author(s):  
Yujie Feng ◽  
Xin Wang ◽  
Bruce E. Logan ◽  
He Lee

2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2013 ◽  
Vol 142 ◽  
pp. 109-114 ◽  
Author(s):  
Xiaoyuan Zhang ◽  
Juan Shi ◽  
Peng Liang ◽  
Jincheng Wei ◽  
Xia Huang ◽  
...  

2012 ◽  
Vol 66 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Haein Cho ◽  
Jieun Chun ◽  
Jiyun Seon ◽  
...  

Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (CODini) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of CODini) and acetate (21.4% of CODini) through lactate (80.3% of CODini) and butyrate (6.1% of CODini). However, an unknown source (62.0% of CODini) and the current (34.5% of CODini) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.


Sign in / Sign up

Export Citation Format

Share Document