scholarly journals Adsorption and Desorption Characteristics of Total Flavonoids from Acanthopanax senticosus on Macroporous Adsorption Resins

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4162
Author(s):  
Xiaoya Wang ◽  
Jianqing Su ◽  
Xiuling Chu ◽  
Xinyu Zhang ◽  
Qibin Kan ◽  
...  

We examined the application of six different resins with the aim of selecting a macroporous resin suitable for purifying Acanthopanax senticosus total flavonoids (ASTFs) from Acanthopanax senticosus crude extract (EAS) by comparing their adsorption/desorption capacities, which led to the selection of HPD-600. Research on the adsorption mechanism showed that the adsorption process had pseudo-second-order kinetics and fit the Freundlich adsorption model. Moreover, the analysis of thermodynamic parameters indicated that the adsorption process is spontaneous and endothermic. The optimal conditions for purification of ASTFs were determined as sample pH of 3, 60% ethanol concentration, and 3 BV·h−1 flow rate, for both adsorption and desorption, using volumes of 2.5 and 4 BV, respectively. The application of macroporous resin HPD-600 to enrich ASTFs resulted in an increase in the purity of total flavonoids, from 28.79% to 50.57%. Additionally, the antioxidant capacity of ASTFs was higher than that of EAS, but both were lower than that of L-ascorbic acid. The changes in ASTFs compositions were determined using ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS), with the results illustrating that the levels of seven major flavonoids of ASTFs were increased compared to that in the crude extract.

2019 ◽  
Vol 15 (1-2) ◽  
Author(s):  
Pingjing Zhang ◽  
Liping Wang ◽  
Sheng Fang

AbstractThe adsorption/desorption characteristics, modeling and properties of anthocyanins from extruded red cabbage juice by macroporous resins were investigated. The static adsorption and desorption capacities of red cabbage anthocyanins on five macroporous resins were measured and compared. The X-5 resin showed the best capacities and was selected for the adsorption kinetics, isotherms and elution studies. The pseudo-second-order kinetic model and Langmuir isotherm model were used to describe the adsorption process and mechanism. Dynamic adsorption and desorption tests were performed on a fixed-bed column, and the loading and eluent conditions were optimized. The purity of anthocyanins in freeze-dried purified powder by the resin adsorption process is 21.3 ± 0.9 wt % and shows better stability in the air than the unpurified one. Finally, the antioxidant activity and color properties including color density, color intensity, color tonality and degradation index of the purified powders were measured.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1519
Author(s):  
Zhuo Wang ◽  
Ha Neul Park ◽  
Sung Wook Won

In this study, the optimal conditions for the fabrication of polyethylenimine/polyvinyl chloride cross-linked fiber (PEI/PVC-CF) were determined by comparing the adsorption capacity of synthesized PEI/PVC-CFs for Reactive Yellow 2 (RY2). The PEI/PVC-CF prepared through the optimal conditions was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analyses. Several batch adsorption and desorption experiments were carried out to evaluate the sorption performance and reusability of PEI/PVC-CF for RY2. As a result, the adsorption of RY2 by PEI/PVC-CF was most effective at pH 2.0. A pseudo-second-order model fit better with the kinetics adsorption data. The adsorption isotherm process was described well by the Langmuir model, and the maximum dye uptake was predicted to be 820.6 mg/g at pH 2.0 and 25 °C. Thermodynamic analysis showed that the adsorption process was spontaneous and endothermic. In addition, 1.0 M NaHCO3 was an efficient eluent for the regeneration of RY2-loaded PEI/PVC-CF. Finally, the repeated adsorption–desorption experiments showed that the PEI/PVC-CF remained at high adsorption and desorption efficiencies for RY2, even in 17 cycles.


Sign in / Sign up

Export Citation Format

Share Document