scholarly journals Discrimination of Methionine Sulfoxide and Sulfone by Human Neutrophil Elastase

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5344
Author(s):  
Darren Leahy ◽  
Cameron Grant ◽  
Alex Jackson ◽  
Alex Duff ◽  
Nicholas Tardiota ◽  
...  

Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase “super substrates” that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.

2000 ◽  
Vol 89 (4) ◽  
pp. 1397-1402 ◽  
Author(s):  
M. Scuri ◽  
R. Forteza ◽  
I. Lauredo ◽  
J. R. Sabater ◽  
Y. Botvinnikova ◽  
...  

Neutrophil elastase has been linked to inflammatory lung diseases such as chronic obstructive pulmonary disease, adult respiratory distress syndrome, emphysema, and cystic fibrosis. In guinea pigs, aerosol challenge with human neutrophil elastase causes bronchoconstriction, but the mechanism by which this occurs is not completely understood. Our laboratory previously showed that human neutrophil elastase releases tissue kallikrein (TK) from cultured tracheal gland cells. TK has been identified as the major kininogenase of the airway and cleaves both high- and low-molecular weight kininogen to yield lysyl-bradykinin. Because inhaled bradykinin causes bronchoconstriction and airway hyperresponsiveness in asthmatic patients and allergic sheep, we hypothesized that elastase-induced bronchoconstriction could be mediated by bradykinin. To test this hypothesis, we measured lung resistance (Rl) in sheep before and after inhalation of porcine pancreatic elastase (PPE) alone and after pretreatment with a bradykinin B2 antagonist (NPC-567), the specific human elastase inhibitor ICI 200,355, the histamine H1-antagonist diphenhydramine hydrochloride, the cysteinyl leukotriene 1 receptor antagonist montelukast, or the cyclooxygenase inhibitor indomethacin. Inhaled PPE (125–1,000 μg) caused a dose-dependent increase in Rl. Aerosol challenge with a single 500 μg dose of PPE increased Rlby 132 ± 8% over baseline. This response was blocked by pretreatment with NPC-567 and ICI-200,355 ( n = 6; P < 0.001), whereas treatment with dyphenhydramine hydrochloride, montelukast, or indomethacin failed to block the PPE-induced bronchoconstriction. Consistent with pharmacological data, TK activity in bronchial lavage fluid increased 134 ± 57% over baseline ( n = 5; P < 0.02). We conclude that, in sheep, PPE-induced bronchoconstriction is in part mediated by the generation of bradykinin. Our findings suggest that elastase-kinin interactions may contribute to changes in bronchial tone during inflammatory diseases of the airways.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karina Krotova ◽  
Nazli Khodayari ◽  
Regina Oshins ◽  
George Aslanidi ◽  
Mark L. Brantly

Abstract There are a number of respiratory diseases characterized by the presence of excess neutrophil elastase (NE) activity in tissues, including cystic fibrosis and chronic obstructive pulmonary disease (COPD). NE is considered a primary contributor to disease development, but the precise mechanism has yet to be fully determined. We hypothesized that NE alters the function of macrophages (Mɸ) which play a critical role in many physiological processes in healthy lungs. We demonstrate that monocyte-derived Mɸ exposed to NE releases active matrix metalloproteinases (MMPs), increase expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-8, and reduce capacity to phagocytose bacteria. Changes in Mɸ function following NE treatment were accompanied by increased adhesion and cytoskeleton re-arrangement, indicating the possibility of integrin involvement. To support this observation, we demonstrate that NE induces phosphorylation of kinases from the Src kinase family, a hallmark of integrin signaling activation. Moreover, pretreatment of Mɸ with a specific Src kinase inhibitor, PP2 completely prevents NE-induced pro-inflammatory cytokine production. Taken together these findings indicate that NE participates in lung destruction not only through direct proteolytic degradation of matrix proteins, but also through activation of Mɸ inflammatory and proteolytic functions.


2021 ◽  
Vol 36 (1) ◽  
pp. 1016-1028
Author(s):  
Katarzyna Jakimiuk ◽  
Jakub Gesek ◽  
Atanas G. Atanasov ◽  
Michał Tomczyk

1994 ◽  
Vol 37 (26) ◽  
pp. 4538-4553 ◽  
Author(s):  
Michael R. Angelastro ◽  
Larry E. Baugh ◽  
Philippe Bey ◽  
Joseph P. Burkhart ◽  
Teng-Man Chen ◽  
...  

Biologicals ◽  
2005 ◽  
Vol 33 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Karin Schorr ◽  
Anita Rott ◽  
FernandoBatista Da Costa ◽  
Irmgard Merfort

1984 ◽  
Vol 32 (4) ◽  
pp. 389-394 ◽  
Author(s):  
J A Kramps ◽  
P van der Valk ◽  
M M van der Sandt ◽  
J Lindeman ◽  
C J Meijer

The immunohistochemical results obtained with antibodies directed against human neutrophil elastase is described. It was found that neutrophil elastase can be used as a specific marker of cells of the neutrophilic lineage. In normal hematopoietic cell preparations, only promyelocytes and more differentiated myeloid cells stain positive for elastase. In acute or chronic myeloid and myelomonocytic leukemia, the same neutrophil myeloid cells stain positive, whereas neoplastic cells of the monocytoid line are negative. Using elastase in conjunction with other markers, it is possible to differentiate easily the involvement of different cell lines in myeloproliferative diseases.


Sign in / Sign up

Export Citation Format

Share Document