scholarly journals C,C- and C,N-Chelated Organocopper Compounds

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5806
Author(s):  
Liang Liu ◽  
Hui Chen ◽  
Zhenqiang Yang ◽  
Junnian Wei ◽  
Zhenfeng Xi

Copper-catalyzed and organocopper-involved reactions are of great significance in organic synthesis. To have a deep understanding of the reaction mechanisms, the structural characterizations of organocopper intermediates become indispensable. Meanwhile, the structure-function relationship of organocopper compounds could advance the rational design and development of new Cu-based reactions and organocopper reagents. Compared to the mono-carbonic ligand, the C,N- and C,C-bidentate ligands better stabilize unstable organocopper compounds. Bidentate ligands can chelate to the same copper atom via η2-mode, forming a mono-cupra-cyclic compounds with at least one acute C-Cu-C angle. When the bidentate ligands bind to two copper atoms via η1-mode at each coordinating site, the bimetallic macrocyclic compounds will form nearly linear C-Cu-C angles. The anionic coordinating sites of the bidentate ligand can also bridge two metals via μ2-mode, forming organocopper aggregates with Cu-Cu interactions and organocuprates with contact ion pair structures. The reaction chemistry of some selected organocopper compounds is highlighted, showing their unique structure–reactivity relationships.

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2743 ◽  
Author(s):  
Ying-Wu Lin

Metalloproteins and metalloenzymes play important roles in biological systems by using the limited metal ions, complexes, and clusters that are associated with the protein matrix. The design of artificial metalloproteins and metalloenzymes not only reveals the structure and function relationship of natural proteins, but also enables the synthesis of artificial proteins and enzymes with improved properties and functions. Acknowledging the progress in rational design from single to multiple active sites, this review focuses on recent achievements in the design of artificial metalloproteins and metalloenzymes with metal clusters, including zinc clusters, cadmium clusters, iron–sulfur clusters, and copper–sulfur clusters, as well as noble metal clusters and others. These metal clusters were designed in both native and de novo protein scaffolds for structural roles, electron transfer, or catalysis. Some synthetic metal clusters as functional models of native enzymes are also discussed. These achievements provide valuable insights for deep understanding of the natural proteins and enzymes, and practical clues for the further design of artificial enzymes with functions comparable or even beyond those of natural counterparts.


Author(s):  
M. G. Monika Bai ◽  
H. Vignesh Babu ◽  
V. Lakshmi ◽  
M. Rajeswara Rao

Fluorescent porous organic polymers are a unique class of materials owing to their strong aggregation induced emission, long range exciton migration and permanent porosity, thus envisioned to possess a wide range of applications (sensing, OLEDs).


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 197
Author(s):  
Iván Ramos-Tomillero ◽  
Marisa K. Sánchez ◽  
Hortensia Rodríguez ◽  
Fernando Albericio

Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability.


2017 ◽  
Vol 3 (8) ◽  
pp. 1700181 ◽  
Author(s):  
Nitin Saxena ◽  
Mihael Čorić ◽  
Anton Greppmair ◽  
Jan Wernecke ◽  
Mika Pflüger ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiu Sun ◽  
Alan Perez-Rathke ◽  
Daniel M. Czajkowsky ◽  
Zhifeng Shao ◽  
Jie Liang

AbstractSingle-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5–6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.


Biochemistry ◽  
1982 ◽  
Vol 21 (11) ◽  
pp. 2592-2600 ◽  
Author(s):  
Yee Hsiung Chen ◽  
Jang Chyi Tai ◽  
Wan Jen Huang ◽  
Ming Zong Lai ◽  
Mien Chie Hung ◽  
...  

2014 ◽  
Vol 118 (19) ◽  
pp. 5059-5074 ◽  
Author(s):  
Kalpana Pandey ◽  
Reema R. Dhoke ◽  
Yogendra Singh Rathore ◽  
Samir K. Nath ◽  
Neha Verma ◽  
...  

1987 ◽  
Vol 16 (3-4) ◽  
pp. 219-226 ◽  
Author(s):  
Walter Fiers ◽  
Rudi Beyaert ◽  
Peter Brouckaert ◽  
Bart Everaerdt ◽  
Guy Haegeman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document