scholarly journals Nitrogen as a Probe Molecule for the IR Studies of the Heterogeneity of OH Groups in Zeolites

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6261
Author(s):  
Łukasz Kuterasiński ◽  
Mariusz Gackowski ◽  
Jerzy Podobiński ◽  
Dorota Rutkowska-Zbik ◽  
Jerzy Datka

One of the methods of IR studies of the heterogeneity of Si–OH–Al groups in zeolites is the investigation of the frequency shift of the band of free OH bands restored upon the adsorption of ammonia and subsequent desorption at increasing temperatures. We extended this method by following the shift of the band of the OH group interacting by hydrogen bonding with nitrogen. The advantage of nitrogen, compared with CO, which has been commonly used as a probe molecule in studies on hydrogen bonding, is that for nitrogen the frequency shift is smaller than for CO and therefore there is no overlapping of shifted OH band with the bands of ammonium ions. For zeolites NaHY, HMFI, and HBEA, the frequency shift of IR bands of both free and hydrogen-bonded Si–OH–Al with the increase of ammonia desorption temperature evidences the heterogeneity of these hydroxyls. On the other hand, in zeolite HFAU of Si/Al = 31, Si–OH–Al were found to be homogeneous. Heterogeneity of OH groups may be explained both by the presence of Si–OH–Al of various number of Al near the bridge and of Si–OH–Al of various geometry.

2015 ◽  
Vol 1120-1121 ◽  
pp. 886-890
Author(s):  
Alfred A. Christy

The adsorption and desorption of water molecules from α, β and γ-cyclodextrins were studied by gravimetric and thermogravimetric analysis. Cyclodextrins like all the other carbohydrates have tendency to adsorb water molecules. However, their cyclic nature tends to affect the adsorption patterns. The cyclic nature of the cyclodextrins facilitates the formation of hydrogen bondings between OH groups of the neighbouring glucose units. The C2(1)-OH forms hydrogen bonding with C3(2)-OH. The extent of the hydrogen bond formation and strength of the hydrogen bond affect the way the adsorption and dehydration of water molecules from cyclodextrins take place.


1965 ◽  
Vol 50 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Jürg Müller

ABSTRACT An extract of human urine, which was previously shown to stimulate aldosterone production by rat adrenal sections, was further purified. Evidence was obtained that its aldosterone-stimulating effect was due to the presence of ammonium ions. Addition of ammonium chloride and of urine extract to the incubation medium caused identical increases in aldosterone production in vitro. In addition to ammonium ions, rubidium and caesium ions also stimulated aldosterone production up to 250% that of control values without a significant effect on corticosterone production. Similar dose-response curves were obtained when increasing concentrations of potassium, ammonium, rubidium and caesium ions were tested. Aldosterone production was maximal at concentrations of 7 mval/1 and was significantly lower at higher concentrations. When ammonium chloride and ACTH were simultaneously added to the incubation medium, the production of aldosterone and of corticosterone was lower than with ACTH alone. On the other hand, the stimulating activity on aldosterone and corticosterone production by »TPN« (NADP) and glucose-6-phosphate was enhanced by the simultaneous addition of ammonium chloride.


1990 ◽  
Vol 55 (10) ◽  
pp. 2377-2380
Author(s):  
Hamza A. Hussain

Nitroxide free radicals prepared from diethylamine, piperidine and pyrrolidine by oxidation with hydrogen peroxide were studied by ESR spectroscopy. The changes in the 14N splitting constant (aN) caused by the addition of KBr or tetraethylammonium bromide were measured in dependence on the concentration of the ions. For diethylamine nitroxide and piperidine nitroxide, the results are discussed in terms of two equilibria: the one, involving the anion, is associated with a gain or loss of hydrogen bonds to the nitroxide oxygen atom, the other is associated with the formation of solvent shared units involving the cation, which results in changes in the hydrogen bonding strenght. The large increase in the aN value in the case of pyrrolidine nitroxide is explained in terms of an interaction from one side of the positively charged N atom; the increase in aN in the case of diethylamine and piperidine nitroxides is explained in terms of interactions with both sides of the positively charged N atom.


1976 ◽  
Vol 30 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Robert L. Carter ◽  
L. Kevin O'Hare

The Raman spectra of polycrystalline (NH4)2CrO4 and (ND4)2CrO4 have been obtained by a sample rotation technique where the uncompressed solid is contained in a glass cylindrical cell. The apparatus is a commerically available sample rotator for liquids, which was modified for the described solid sampling technique. The Raman spectra of (NH4)2CrO4 and (ND4)2CrO4 are discussed in relation to their uniquely monoclinic structure, in contrast to the β-K2SO4 structure found for (NH4)2SO4 and many alkali metal chromates and sulfates. The hydrogen bonding in (NH4)2CrO4 is described, and its role in determining both the structure and the Raman spectra is discussed. The data suggest a barrier to NH4+ rotation of approximately 3.70 kcal/mol, indicating that the ammonium ions are not freely rotating on the time scale of the Raman experiment (10−13 sec).


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Helena Abramovič ◽  
Blaž Grobin ◽  
Nataša Poklar Ulrih ◽  
Blaž Cigić

Trolox, gallic acid, chlorogenic acid, caffeic acid, catechin, epigallocatechin gallate, and ascorbic acid are antioxidants used as standards for reaction with chromogenic radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH⋅) and 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS⋅+), and Folin–Ciocalteu (FC) reagent. The number of exchanged electrons has been analyzed as function of method and solvent. A majority of compounds exchange more electrons in FC assay than in ABTS and DPPH assays. In reaction with chromogenic radicals, the largest number of electrons was exchanged in buffer (pH 7.4) and the lowest reactivity was in methanol (DPPH) and water (ABTS). At physiological pH, the number of exchanged electrons of polyphenols exceeded the number of OH groups, pointing to the important contribution of partially oxidized antioxidants, formed in the course of reaction, to the antioxidant potential. For Trolox, small impact on the number of exchanged electrons was observed, confirming that it is more suitable as a standard compound than the other antioxidants.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.


1981 ◽  
Vol 34 (4) ◽  
pp. 737 ◽  
Author(s):  
E Horn ◽  
MR Snow

The title compound has been prepared from Re(CO)5Br by a bromide-abstraction reaction with silver fluoride. It completes the series of known halide clusters of the type [Re(CO)3X]4 (where X = halide). The crystals are tetragonal, space group 14, with a 11.716(5), c 8.988(3) �, and Z 2. The structure was refined by full-matrix least-squares to an R value of 0.027 for 1380 observed reflections. The molecules are cubane-type clusters of Re(CO)3 groups at one set of corners interpenetrated with fluorine atoms at the other set. The clusters exhibit the molecular symmetry 43m. Each of the fluorine atoms is involved in μ3 type bridging with the rhenium atoms at an average bonding distance of 2.200(5) �. The clusters are held together by hydrogen bonding of fluoride to water molecules.


1993 ◽  
Vol 115 (17) ◽  
pp. 7900-7901 ◽  
Author(s):  
Paul B. Savage ◽  
Steven K. Holmgren ◽  
Samuel H. Gellman

Author(s):  
Ivica Cvrtila ◽  
Vladimir Stilinović

The crystal structures of two polymorphs of a phenazine hexacyanoferrate(II) salt/cocrystal, with the formula (Hphen)3[H2Fe(CN)6][H3Fe(CN)6]·2(phen)·2H2O, are reported. The polymorphs are comprised of (Hphen)2[H2Fe(CN)6] trimers and (Hphen)[(phen)2(H2O)2][H3Fe(CN)6] hexamers connected into two-dimensional (2D) hydrogen-bonded networks through strong hydrogen bonds between the [H2Fe(CN)6]2− and [H3Fe(CN)6]− anions. The layers are further connected by hydrogen bonds, as well as through π–π stacking of phenazine moieties. Aside from the identical 2D hydrogen-bonded networks, the two polymorphs share phenazine stacks comprising both protonated and neutral phenazine molecules. On the other hand, the polymorphs differ in the conformation, placement and orientation of the hydrogen-bonded trimers and hexamers within the hydrogen-bonded networks, which leads to different packing of the hydrogen-bonded layers, as well as to different hydrogen bonding between the layers. Thus, aside from an exceptional number of symmetry-independent units (nine in total), these two polymorphs show how robust structural motifs, such as charge-assisted hydrogen bonding or π-stacking, allow for different arrangements of the supramolecular units, resulting in polymorphism.


Sign in / Sign up

Export Citation Format

Share Document