scholarly journals Genotoxic Evaluation of Fe3O4 Nanoparticles in Different Three Barley (Hordeum vulgare L.) Genotypes to Explore the Stress-Resistant Molecules

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6710
Author(s):  
Inese Kokina ◽  
Ilona Plaksenkova ◽  
Renata Galek ◽  
Marija Jermaļonoka ◽  
Elena Kirilova ◽  
...  

Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists’ attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe3O4 NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley (Hordeum vulgare L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe3O4 NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe3O4 NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.

Author(s):  
O. A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Seed longevity of 76 spring barley gene pool samples (Hordeum vulgare L. subsp. distichon, convar. distichon: 56 nutans Schubl., two deficience (Steud.) Koern., two erectum Rode ex Shuebl., two medicum Koern.; convar. nudum (L.) A.Trof.: one nudum L. та subsp. vulgare: convar. vulgare: nine pallidum Ser., three rikotense Regel.; convar. coeleste (L.) A.Trof.: one coeleste (L.) A.Trof.) from 26 countries, 11 years and four places of reproduction was analyzed. Seeds with 5–8% moisture content were stored in chamber with unregulated and 4oC temperature. The possibility of seed storage under these conditions for at least 10 years without significant changes in germination has been established. The importance of meteorological conditions in the formation and ripening of seeds for their longevity is confirmed. The relationship between the decrease of barley seeds longevity and storage conditions, amount of rainfall, temperature regime during the growing season of plants is discussed.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
R. S. Suman

The highest yield (420 kg/ha) was recorded in the year 2011-12. In Front-Line Demonstration, it was 27.27 percent more over the farmers practice (320 kg/ha), however, the lowest yield (350 kg/ha) was recorded in the year 2010-11 under Front-Line Demonstration and 310 kg/ha in farmers' practice. Increase in the yield (27.27%) under Front-Line Demonstration over farmers practice was obtained during the year 2011-12. The variation in the percent increase in the yield was found due to variation in agro climate parameter under rainfed condition. Under sustainable agricultural practices, with this study it is concluded that the Front- LineDemonstration programme was effective in changing attitude, skill and knowledge of improved / recommended practices of High Yielding Varieties of peas included adoption. This also improved the relationship between farmers and scientist and built confidence between them.


1982 ◽  
Vol 62 (1) ◽  
pp. 183-188 ◽  
Author(s):  
R. RIOUX

Barley (Hordeum vulgare L. ’Champlain’) was grown with quackgrass (Agropyron repens (L.) Beauv.) at various densities for 3 yr. According to the regression analysis, a linear relation is appropriate to describe the relationship between yield of barley and biomass or density of quackgrass. A greater proportion of yield variability was explained by density (64%) than by biomass (40%). Density is then a better criterion than biomass to predict yield lost in barley. The linear relationship between barley yield and the shoot density of quackgrass is estimated by the following equation: yield barley = 345.3–0.5682 dens, quackgrass. An increase of 10 shoots/m2 in the mean density of quackgrass resulted in a mean loss of 6 g/m2 in the yield of barley.


2017 ◽  
Vol 44 (12) ◽  
pp. 1194 ◽  
Author(s):  
Joanne Tilbrook ◽  
Rhiannon K. Schilling ◽  
Bettina Berger ◽  
Alexandre F. Garcia ◽  
Christine Trittermann ◽  
...  

Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250 mM NaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+ : Na+ ratios).


1998 ◽  
Vol 78 (1) ◽  
pp. 187-195 ◽  
Author(s):  
M. Camps Arbestain

Knowledge of the transfers of selenium (Se) in the soil-plant-atmosphere environmental compartments is fundamental in assessing Se cycling through the environment. The purpose of this study was to determine the effects of straw amendments and barley (Hordeum vulgare L.) on Se cycling in soils from Kesterson Reservoir, Merced County, CA (0.68 mg soluble Se kg−1, 6.15 mg total Se kg−1), and to evaluate the feasibility of these agricultural practices as bioremediation strategies. Four treatments were evaluated: soil only, soil + straw, soil + plant, and soil + straw + plant. Straw amendments greatly reduced Se from soil solution (92–97% of initial soluble Se). Selenate [Se(VI)] was the predominant species in soil solution. Phosphate-extractable Se did not account for the decline in soluble Se. Selenium volatilized by microbes represented only 4–5% of the soluble Se removed. Highest Se removal from soil solution and highest Se volatilization rates occurred when both microbial activity and growth were maximal. Selenate microbial reduction to more insoluble Se forms is indicated as being responsible for this removal. Plants did not account for as much Se removal from soil solution as did straw amendments. Total shoot Se corresponded to 1–9% of soluble Se removal. At the end of the experiment, Se in plants represented 0.1–0.7% of total Se in the system, and the Se volatilized accounted for 0.2 to 0.5% of total Se inventory. The results obtained in this study suggest the use of straw amendments as a remediation technique for managing Se contamination at Kesterson Reservoir. Key words: Barley, selenium, soil solution, straw, volatilization


Author(s):  
Shafiq AHMAD ◽  
Taqi RAZA ◽  
Shakeel IMRAN ◽  
Neal S. EASH ◽  
Nawab KHAN ◽  
...  

Crop productivity is limited by several environmental constraints. Among these, micronutrients availability to plants plays a key role in agricultural crops production. Boron is an important micronutrient for crops and it significantly aids in a grain setting. Soil applied boron become unavailable to plant due to fixation in soil sites and cause nutrients deficiency in plants, immature grain settings, and yield reduction. Thus, the aim of this work was to quantify the impact of the foliar application of boron gradients on the yield and growth of barley (Hordeum vulgare L.). Five treatments were studied, which included; T1= Control (0% B), T2 = 0.5% B, T3 = 1% B, T4 =1.5% B, and T5 =2% B. The results indicated that foliar application of B significantly increased the yield and growth traits in barley. However, 2% foliar application of B showed the highest value for all studied traits including; plant height (5.6%), number of tillers per plant (2.4%), spike length (32%), weight gain per spike (6.2%), seed index (6%), grain yield (10%), and biological yield (4%). Based on these findings, it can be concluded that the foliar application of B at 2% can be used to improve the growth and yield in barley.


Sign in / Sign up

Export Citation Format

Share Document