scholarly journals A Metastable p-Type Semiconductor as a Defect-Tolerant Photoelectrode

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6830
Author(s):  
Zahirul Sohag ◽  
Shaun O’Donnell ◽  
Lindsay Fuoco ◽  
Paul A. Maggard

A p-type Cu3Ta7O19 semiconductor was synthesized using a CuCl flux-based approach and investigated for its crystalline structure and photoelectrochemical properties. The semiconductor was found to be metastable, i.e., thermodynamically unstable, and to slowly oxidize at its surfaces upon heating in air, yielding CuO as nano-sized islands. However, the bulk crystalline structure was maintained, with up to 50% Cu(I)-vacancies and a concomitant oxidation of the Cu(I) to Cu(II) cations within the structure. Thermogravimetric and magnetic susceptibility measurements showed the formation of increasing amounts of Cu(II) cations, according to the following reaction: Cu3Ta7O19 + x/2 O2 → Cu(3−x)Ta7O19 + x CuO (surface) (x = 0 to ~0.8). With minor amounts of surface oxidation, the cathodic photocurrents of the polycrystalline films increase significantly, from <0.1 mA cm−2 up to >0.5 mA cm−2, under visible-light irradiation (pH = 6.3; irradiant powder density of ~500 mW cm−2) at an applied bias of −0.6 V vs. SCE. Electronic structure calculations revealed that its defect tolerance arises from the antibonding nature of its valence band edge, with the formation of defect states in resonance with the valence band, rather than as mid-gap states that function as recombination centers. Thus, the metastable Cu(I)-containing semiconductor was demonstrated to possess a high defect tolerance, which facilitates its high cathodic photocurrents.

2017 ◽  
Vol 4 (9) ◽  
pp. 1458-1464 ◽  
Author(s):  
M.-Y. Lee ◽  
D. I. Bilc ◽  
E. Symeou ◽  
Y.-C. Lin ◽  
I.-C. Liang ◽  
...  

A new p-type semiconductor Ba3Ag3InTe6 with transport properties dominated by the layer [Ag3Te4]5− distributed in the valence band.


2001 ◽  
Vol 680 ◽  
Author(s):  
Agustinus Sutandi ◽  
P. Paul Ruden ◽  
Kevin F. Brennan

ABSTRACTThe physics of bulk wurtzite-structure III-nitride materials and of III-nitride heterostructures includes many phenomena that can be modulated by the application of stress. In particular, p- type material is expected to display a rich variety of piezo-resistive and piezo-optic effects that originate from the stress-induced modulation of lattice polarization charges, of valence band energies, and of bulk, surface, and interface defect states in the band gap. Here we focus on the expected effects of in-plane uniaxial on p-channel AlGaN/GaN heterostructures grown along the hexagonal axis on sapphire substrates. The valence band structure in the channel region is calculated self-consistently in the framework of a six-band Rashba-Sheka-Pikus (RSP) Hamiltonian. Stress-effects are included (in linear elastic theory) through deformation potentials and through the modulation of interfacial polarization charges associated with the piezoelectric nature of the constituent materials.


2020 ◽  
pp. 228-247
Author(s):  
Sandip Tiwari

This chapter discusses understanding interfaces, how bulk state reasoning needs to evolve under the constraints of the surface and how these changes relate to interfaces. Interfaces and junctions connect semiconductors to the world and introduce perturbations of their own. Starting with a discussion of the SiO­­­2-Si interface—an amorphous-crystalline interface—with its local evolution, more general conditions—of metals, insulators and semiconductors—with defect states, induced gap states and Fermi pinning are discussed. Next, neutrality level as a defining idea for the establishment of the electronic behavior of metal-semiconductor and semiconductor-semiconductor interfaces is examined. Crystalline continuity leading to heterostructures with conduction band and valence band discontinuities are developed and related to bulk bandstructure. This allows one to analytically describe and show the junction band diagrams of abrupt and graded junctions. Nitride systems often have a polarized junction, that is, have large polarization—spontaneous and often piezoelectric—whose origin is explored.


2021 ◽  
Vol 82 (3) ◽  
pp. 5-11
Author(s):  
Volodymyr Krayovskyy ◽  
◽  
Volodymyr Pashkevych ◽  
Andriy Horpenuk ◽  
Volodymyr Romaka ◽  
...  

The results of a comprehensive study of the crystal and electronic structures, kinetic and energetic performances of the semiconductor thermometric material Er1-xScxNiSb, (x=0–0.1) are presented. Microprobe analysis of the concentration of atoms on the surface of Er1-xScxNiSb samples established their correspondence to the initial compositions of the charge, and the diffractograms of the samples are indexed in the structural type of MgAgAs. Because the atomic radius Sc (rSc=0.164 nm) is smaller than that of Er (rEr=0.176 nm), it is logical to reduce the values of the unit cell's period a(x) Er1-xScxNiSb, which correlate with the results of mathematical modeling. The temperature dependences of the resistivity ln(ρ(1/T)) contain high- and low-temperature activation regions, which are specific for semiconductors and indicate the location of the Fermi level in the bandgap, and positive values of the thermopower coefficient a(x, T) specify its position – near the valence band . This result does not agree with the results of modeling the electronic structure for its ordered version. The presence of a low-temperature activation region on the ln(ρ(1/T)) p-ErNiSb dependence with an activation energy =0.4 meV indicates the compensation of the sample provided by acceptors and donors of unknown origin. A decrease in the values of the resistivity ρ(x, T) and the thermopower coefficient a(x, T) points to an increase in the concentration of holes in p-Er1- xScxNiSb in the area of concentrations x=0–0.03. This is possible in a p-type semiconductor only by increasing the concentration of the main current carriers, which are holes. The fact of increasing the concentration of acceptors in Er1-xScxNiSb at insignificant concentrations of impurity atoms is also indicated by the nature of the change in the values of the activation energy of holes from the Fermi level to the valence band . Consequently, if in p-ErNiSb the Fermi level was at a distance of 45.4 meV from the level of the valence band , then at the concentration Er1-xScxNiSb, x=0.01, the Fermi level shifted towards the valence band and was located at a distance of 13.6. Since the Fermi level reflects the ratio of ionized acceptors and donors in the semiconductor, its movement by x=0.01 to the valence band is possible either with an increase in the number of acceptors or a rapid decrease in the concentration of ionized donors. At even higher concentrations of Sc impurity in p-Er1-xScxNiSb, x≥0.03, low-temperature activation sites appear on the ln(ρ(1/T)) dependences, which is a sign of compensation and evidence of the simultaneous generation of acceptor and donor structural defects in the crystal nature. This is also indicated by the change in the position of the Fermi level in the bandgap of the semiconductor Er1-xScxNiSb, which is almost linearly removed from the level of the valence band : (x=0.05)=58.6 meV and (x=0.10)=88.1 meV. Such a movement of the Fermi level during doping of a p-type semiconductor is possible only if donors of unknown origin are generated. For a p-type semiconductor, this is possible only if the concentration of the main current carriers, which are free holes, is reduced, and donors are generated that compensate for the acceptor states. This conclusion is also confirmed by the behavior of the thermopower coefficient a(x, T) at concentrations x≥0.03. The results of structural, kinetic, and energy studies of the thermometric material Er1-xScxNiSb allow us to speak about a complex mechanism of simultaneous generation of structural defects of acceptor and donor nature. However, the obtained array of experimental information does not allow us to unambiguously prove the existence of a mechanism for generating donors and acceptors. The research article offers a solution to this problem. Having the experimental results of the drift rate of the Fermi level as the activation energy (x) from the Fermi level to the valence band by calculating the distribution of the density of electronic states (DOS) sought the degree of compensation, which sets the direction and velocity of the Fermi level as close as possible to the experimental results. DOS calculations are performed for all variants of the location of atoms in the nodes of the unit cell, and the degree of occupancy of all positions by their own and/or foreign atoms. It turned out that for ErNiSb the most acceptable option is one that assumes the presence of vacancies in positions 4a and 4c of the Er and Ni atoms, respectively. Moreover, the number of vacancies in the position Er (4a) is twice less than the number of vacancies in the position Ni (4c). This proportion is maintained for Er1-xScxNiSb. Vacancies in the positions of Er (4a) and Ni (4c) atoms Er1-xScxNiSb are structural defects of acceptor nature, which generate two acceptor zones and in the semiconductor. The introduction of impurity Sc atoms into the ErNiSb structure by substituting Er atoms in position 4a is also accompanied by the occupation of vacancies by Sc atoms and a reduction in their number. Occupying a vacancy, the Sc atom participates in the formation of the valence band and the conduction band of the semiconductor Er1-xScxNiSb, acting as a source of free electrons. We can also assume that the introduction of Sc atoms into the structure of the compound ErNiSb is accompanied by a process of ordering the structure of Er1-xScxNiSb and Ni atoms occupy vacancies in position 4c. This process also, however, 2 times slower, leads to a decrease in the concentration of structural defects of acceptor nature. In this case, Ni, giving valence electrons, now act as donors.


2000 ◽  
Vol 637 ◽  
Author(s):  
Agustinus Sutandi ◽  
P. Paul Ruden ◽  
Kevin F. Brennan

AbstractThe physics of bulk wurtzite-structure III-nitride materials and of III-nitride heterostructures includes many phenomena that can be modulated by the application of stress. In particular, p-type material is expected to display a rich variety of piezo-resistive and piezo-optic effects that originate from the stress-induced modulation of lattice polarization charges, of valence band energies, and of bulk, surface, and interface defect states in the band gap. Here we focus on the expected effects of in-plane uniaxial on p-channel AlGaN/GaN heterostructures grown along the hexagonal axis on sapphire substrates. The valence band structure in the channel region is calculated self-consistently in the framework of a six-band Rashba-Sheka-Pikus (RSP) Hamiltonian. Stress-effects are included (in linear elastic theory) through deformation potentials and through the modulation of interfacial polarization charges associated with the piezoelectric nature of the constituent materials.


1985 ◽  
Vol 63 (10) ◽  
pp. 1306-1308 ◽  
Author(s):  
F. A. Benko ◽  
F. P. Koffyberg

CuYO2, doped with calcium, is a low-mobility p-type semiconductor. From photoelectrochemical measurements it is found that the valence band edge is 5.3 eV below the vacuum level, typical for oxides with a metal-3d valence band. The lowest bandgap is 1.20 eV and the transition is indirectly allowed. An optical transition at 3.60 eV indicates an oxygen-2p valence band at 7.7 eV below vacuum. The results are discussed with the help of a simplified band scheme.


2014 ◽  
Vol 26 (23) ◽  
pp. 6711-6721 ◽  
Author(s):  
Ian Sullivan ◽  
Prangya P. Sahoo ◽  
Lindsay Fuoco ◽  
Andrew S. Hewitt ◽  
Sean Stuart ◽  
...  

2003 ◽  
Vol 766 ◽  
Author(s):  
V. Ligatchev ◽  
T.K.S. Wong ◽  
T.K. Goh ◽  
Rusli Suzhu Yu

AbstractDefect spectrum N(E) of porous organic dielectric (POD) films is studied with capacitance deep-level-transient-spectroscopy (C-DLTS) in the energy range up to 0.7 eV below conduction band bottom Ec. The POD films were prepared by spin coating onto 200mm p-type (1 – 10 Δcm) single-side polished silicon substrates followed by baking at 325°C on a hot plate and curing at 425°C in furnace. The film thickness is in the 5000 – 6000 Å range. The ‘sandwich’ -type NiCr/POD/p-Si/NiCr test structures showed both rectifying DC current-voltage characteristics and linear 1/C2 vs. DC reverse bias voltage. These confirm the applicability of the C-DLTS technique for defect spectrum deconvolution and the n-type conductivity of the studied films. Isochronal annealing (30 min in argon or 60 min in nitrogen) has been performed over the temperature range 300°C - 650°C. The N(E) distribution is only slightly affected by annealing in argon. However, the distribution depends strongly on the annealing temperature in nitrogen ambient. A strong N(E) peak at Ec – E = 0.55 – 0.60 eV is detected in all samples annealed in argon but this peak is practically absent in samples annealed in nitrogen at Ta < 480°C. On the other hand, two new peaks at Ec – E = 0.12 and 0.20 eV appear in the N(E) spectrum of the samples annealed in nitrogen at Ta = 650°C. The different features of the defect spectrum are attributed to different interactions of argon and nitrogen with dangling carbon bonds on the intra-pore surfaces.


Sign in / Sign up

Export Citation Format

Share Document