The optical bandgap and band-edge positions of semiconducting p-type CuYO2

1985 ◽  
Vol 63 (10) ◽  
pp. 1306-1308 ◽  
Author(s):  
F. A. Benko ◽  
F. P. Koffyberg

CuYO2, doped with calcium, is a low-mobility p-type semiconductor. From photoelectrochemical measurements it is found that the valence band edge is 5.3 eV below the vacuum level, typical for oxides with a metal-3d valence band. The lowest bandgap is 1.20 eV and the transition is indirectly allowed. An optical transition at 3.60 eV indicates an oxygen-2p valence band at 7.7 eV below vacuum. The results are discussed with the help of a simplified band scheme.

2016 ◽  
Vol 188 ◽  
pp. 309-316 ◽  
Author(s):  
Lifang Wei ◽  
Linpeng Jiang ◽  
Shuai Yuan ◽  
Xin Ren ◽  
Yin Zhao ◽  
...  

2008 ◽  
Vol 113 (3) ◽  
pp. 1028-1036 ◽  
Author(s):  
Felipe Caballero-Briones ◽  
Juan M. Artés ◽  
Ismael Díez-Pérez ◽  
Pau Gorostiza ◽  
Fausto Sanz

1992 ◽  
Vol 70 (2-3) ◽  
pp. 99-103 ◽  
Author(s):  
F. A. Benko ◽  
F. P. Koffyberg

CuV2O6 and Cu2V2O7 are low-mobility n-type semiconductors; at room temperature [Formula: see text]. From photoelectron-chemical measurements optical interband transitions are found at 2.02 and 3.15 eV for indium-doped CuV2O6, and at 1.87 and 2.88 eV for Cu2V2O7. In both materials the valence band edge is 6.9 eV below the vacuum level; a qualitative analysis of all data indicates that the upper valence band is made up mainly of oxygen-2p wave functions, as in V2O5.


2021 ◽  
Vol 2 (3) ◽  
pp. 274-283
Author(s):  
Masaya Ichimura

The band alignment of Mg(OH)2-based heterostructures is investigated based on first-principles calculation. (111)-MgO/(0001)-Mg(OH)2 and (0001)-wurtzite ZnO/(0001)-Mg(OH)2 heterostructures are considered. The O 2s level energy is obtained for each O atom in the heterostructure supercell, and the band edge energies are evaluated following the procedure of the core-level spectroscopy. The calculation is based on the generalized gradient approximation with the on-site Coulomb interaction parameter U considered for Zn. For MgO/Mg(OH)2, the band alignment is of type II, and the valence band edge of MgO is higher by 1.6 eV than that of Mg(OH)2. For ZnO/Mg(OH)2, the band alignment is of type I, and the valence band edge of ZnO is higher by 0.5 eV than that of Mg(OH)2. Assuming the transitivity rule, it is expected that Mg(OH)2 can be used for certain types of heterostructure solar cells and dye-sensitized solar cells to improve the performance.


2021 ◽  
Author(s):  
Giorgia Olivieri ◽  
Gregor Kladnik ◽  
Dean Cvetko ◽  
Matthew A. Brown

The electronic structure of hydrated nanoparticles can be unveiled by coupling a liquid microjet with a resonant photoemission spectroscopy.


2017 ◽  
Vol 4 (9) ◽  
pp. 1458-1464 ◽  
Author(s):  
M.-Y. Lee ◽  
D. I. Bilc ◽  
E. Symeou ◽  
Y.-C. Lin ◽  
I.-C. Liang ◽  
...  

A new p-type semiconductor Ba3Ag3InTe6 with transport properties dominated by the layer [Ag3Te4]5− distributed in the valence band.


MRS Advances ◽  
2019 ◽  
Vol 4 (40) ◽  
pp. 2217-2222
Author(s):  
Renu Choudhary ◽  
Rana Biswas ◽  
Bicai Pan ◽  
Durga Paudyal

AbstractMany novel materials are being actively considered for quantum information science and for realizing high-performance qubit operation at room temperature. It is known that deep defects in wide-band gap semiconductors can have spin states and long coherence times suitable for qubit operation. We theoretically investigate from ab-initio density functional theory (DFT) that the defect states in the hexagonal silicon carbide (4H-SiC) are potential qubit materials. The DFT supercell calculations were performed with the local-orbital and pseudopotential methods including hybrid exchange-correlation functionals. Di-vacancies in SiC supercells yielded defect levels in the gap consisting of closely spaced doublet just above the valence band edge, and higher levels in the band gap. The divacancy with a spin state of 1 is charge neutral. The divacancy is characterized by C-dangling bonds and a Si-dangling bonds. Jahn-teller distortions and formation energies as a function of the Fermi level and single photon interactions with these defect levels will be discussed. In contrast, the anti-site defects where C, Si are interchanged have high formation energies of 5.4 eV and have just a single shallow defect level close to the valence band edge, with no spin. We will compare results including the defect levels from both the electronic structure approaches.


2006 ◽  
Vol 3 (6) ◽  
pp. 1850-1853 ◽  
Author(s):  
Y. Ishitani ◽  
W. Terashima ◽  
S. B. Che ◽  
A. Yoshikawa

RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11377-11384 ◽  
Author(s):  
Kaili Wei ◽  
Baolai Wang ◽  
Jiamin Hu ◽  
Fuming Chen ◽  
Qing Hao ◽  
...  

It's highly desired to design an effective Z-scheme photocatalyst with excellent charge transfer and separation, a more negative conduction band edge (ECB) than O2/·O2− (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH− (+2.27 eV).


Sign in / Sign up

Export Citation Format

Share Document