Semiconductor interfaces and junctions

2020 ◽  
pp. 228-247
Author(s):  
Sandip Tiwari

This chapter discusses understanding interfaces, how bulk state reasoning needs to evolve under the constraints of the surface and how these changes relate to interfaces. Interfaces and junctions connect semiconductors to the world and introduce perturbations of their own. Starting with a discussion of the SiO­­­2-Si interface—an amorphous-crystalline interface—with its local evolution, more general conditions—of metals, insulators and semiconductors—with defect states, induced gap states and Fermi pinning are discussed. Next, neutrality level as a defining idea for the establishment of the electronic behavior of metal-semiconductor and semiconductor-semiconductor interfaces is examined. Crystalline continuity leading to heterostructures with conduction band and valence band discontinuities are developed and related to bulk bandstructure. This allows one to analytically describe and show the junction band diagrams of abrupt and graded junctions. Nitride systems often have a polarized junction, that is, have large polarization—spontaneous and often piezoelectric—whose origin is explored.

2005 ◽  
Vol 864 ◽  
Author(s):  
Salameh Ahmad ◽  
Daniel Bilc ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

AbstractAb initioelectronics structure calculations have been carried out in a series of RPb2n-1Te2n, n=16, compounds to understand the nature of “defect” states introduced by R where R = vacancy, monovalent Na, K, Rb, Cs, Ag atoms and divalent Cd atoms. We find that the density of states (DOS) near the top of the valence band and the bottom of the conduction band get significantly modified. The Na atom seems to perturb this region least (ideal acceptor in PbTe) and the other monovalent atoms enhance the DOS near the top of the valence band. Cd is an interesting case, since it introduces a strong resonance state near the bottom of the conduction band.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6830
Author(s):  
Zahirul Sohag ◽  
Shaun O’Donnell ◽  
Lindsay Fuoco ◽  
Paul A. Maggard

A p-type Cu3Ta7O19 semiconductor was synthesized using a CuCl flux-based approach and investigated for its crystalline structure and photoelectrochemical properties. The semiconductor was found to be metastable, i.e., thermodynamically unstable, and to slowly oxidize at its surfaces upon heating in air, yielding CuO as nano-sized islands. However, the bulk crystalline structure was maintained, with up to 50% Cu(I)-vacancies and a concomitant oxidation of the Cu(I) to Cu(II) cations within the structure. Thermogravimetric and magnetic susceptibility measurements showed the formation of increasing amounts of Cu(II) cations, according to the following reaction: Cu3Ta7O19 + x/2 O2 → Cu(3−x)Ta7O19 + x CuO (surface) (x = 0 to ~0.8). With minor amounts of surface oxidation, the cathodic photocurrents of the polycrystalline films increase significantly, from <0.1 mA cm−2 up to >0.5 mA cm−2, under visible-light irradiation (pH = 6.3; irradiant powder density of ~500 mW cm−2) at an applied bias of −0.6 V vs. SCE. Electronic structure calculations revealed that its defect tolerance arises from the antibonding nature of its valence band edge, with the formation of defect states in resonance with the valence band, rather than as mid-gap states that function as recombination centers. Thus, the metastable Cu(I)-containing semiconductor was demonstrated to possess a high defect tolerance, which facilitates its high cathodic photocurrents.


1991 ◽  
Vol 219 ◽  
Author(s):  
Nobuhiro Hata ◽  
Sigurd Wagner

ABSTRACTWe report the determination of the distribution of occupied defect states in hydrogenated amorphous silicon from the deconvolution of constant photocurrent measurement (CPM) spectra, and the modelling of the distribution with the defect pool.The CPM spectra were taken on undoped a-Si:H samples either in their as-grown state, in the annealed state, after quenching from high temperature, or after light-soaking. The spectra were deconvoluted to account for transitions from deep levels and from valence band tail states to a conduction band assumed to have a sharp edge. As-grown or annealed-state samples show a peak at 1.0 eV (0.2 eV FWHM) below the conduction band edge. Assuming a mobility gap of 1.9 eV, this peak lies 0.9 eV above the valence band edge. We ascribe this peak to the Do/+ transition. CPM spectra of light-soaked and thermally quenched samples show shifts in the peak position and increases in die peak height in accordance with the defect pool model. The model calculations agree with the CPM results, so that the applicability of CPM spectral analysis to obtaining detailed values of defect pool parameters is demonstrated.


2001 ◽  
Vol 664 ◽  
Author(s):  
L.F. Fonseca ◽  
S. Z. Weisz ◽  
I. Balberg

ABSTRACTThis paper is concerned with the phenomenon of the increase of the holes lifetime with the increase of the dangling bond concentration in a-Si:H. This rather surprising phenomenon that was observed, but not discussed, previously is shown to be a non-trivial effect which is based on the charged nature of the dangling bonds and a special scenario of the concentrations of the various defect states in the material. The most important implication of our study is that the charged dangling bonds can sensitize the valence band tail states, in contrast with the accepted roles of these types of states. The present understanding suggests that many new interesting phototransport phenomena can be found in a-Si:H.


Author(s):  
Shuping Guo ◽  
Shashwat Anand ◽  
Madison K. Brod ◽  
Yongsheng Zhang ◽  
G. Jeffrey Snyder

Semiconducting half-Heusler (HH, XYZ) phases are promising thermoelectric materials owing to their versatile electronic properties. Because the valence band of half-Heusler phases benefits from the valence band extrema at several...


Author(s):  
В.П. Смагин ◽  
А.А. Исаева ◽  
Е.А. Шелепова

Nanoscale particles ZnS:Nd3+, CdS:Nd3+ and (Zn,Cd)S:Nd3+ were synthesized and doped in a polymerizing methyl methacrylate medium during the production of optically transparent polyacrylate composites of the composition PMMA/ZnS:Nd3+, PMMA/CdS:Nd3+ and PMMA/(Zn,Cd)S:Nd3+. The excitation of photoluminescence (FL) and FL of semiconductor structures in composites is associated with the transition of electrons from the valence band to the conduction band and to the levels of structural defects of semiconductor particles, followed by recombination at these levels. Based on changes in the excitation spectra of FL and FL composites, assumptions are made about the structure of particles, the distribution of Nd3+ ions in it and their effect on photoluminescence.


2002 ◽  
Vol 09 (01) ◽  
pp. 469-472
Author(s):  
V. N. KOLOBANOV ◽  
I. A. KAMENSKIKH ◽  
V. V. MIKHAILIN ◽  
I. N. SHPINKOV ◽  
D. A. SPASSKY ◽  
...  

The optical properties of a wide series of the tungstates with the scheelite and wolframite crystal structure at the threshold of the fundamental absorption region were studied. New information about the influence of the electronic states forming the bottom of the conduction band and the top of the valence band on the formation of emission centers and mechanisms of energy transfer to these centers was obtained.


RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11377-11384 ◽  
Author(s):  
Kaili Wei ◽  
Baolai Wang ◽  
Jiamin Hu ◽  
Fuming Chen ◽  
Qing Hao ◽  
...  

It's highly desired to design an effective Z-scheme photocatalyst with excellent charge transfer and separation, a more negative conduction band edge (ECB) than O2/·O2− (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH− (+2.27 eV).


2014 ◽  
Vol 92 (7/8) ◽  
pp. 619-622
Author(s):  
N. Qamhieh ◽  
S.T. Mahmoud ◽  
A.I. Ayesh

Steady-state photoconductivity measurements in the temperature range 100–300 K on amorphous Ge2Sb2Te5 thin film prepared by dc sputtering are analyzed. The dark conductivity is thermally activated with a single activation energy that allocates the position of the Fermi level approximately in the middle of the energy gap relative to the valance band edge. The temperature dependence of the photoconductivity ensures the presence of a maximum normally observed in chalcogenides with low- and high-temperature slopes, which predict the location of discrete sets of localized states (recombination levels) in the gap. The presence of these defect states close to the valence and conduction band edges leaves the quasi Fermi level shifts in a continuous distribution of gap states at high temperatures, as evidenced from the γ values of the lux–ampere characteristics.


Sign in / Sign up

Export Citation Format

Share Document