scholarly journals Purification, Structural Characterization, and Anti-Inflammatory Effects of a Novel Polysaccharide Isolated from Orostachys fimbriata

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7116
Author(s):  
Datong Hu ◽  
Fan Su ◽  
Gan Yang ◽  
Jing Wang ◽  
Yingying Zhang

The present study elucidated the structural characteristics and anti-inflammatory activity of a novel polysaccharide isolated from Orostachys fimbriata, which is a traditional Chinese medicinal plant. O. fimbriata polysaccharide (OFP) was extracted and subsequently purified by chromatography using a DEAE cellulose-52 and Sephadex G-75 column. The molecular weight was determined as 6.2 kDa. HPGPC and monosaccharide composition analysis revealed a homogeneous polysaccharide containing only Glc. Chromatography and spectral analysis showed that the possible chemical structure consisted of →4)-α-Glcp-(1→ and a small quantity of →4,6)-β-Glcp-(1→ in the main chain and →6)-β-Glcp-(1→, α-Glcp-(1→, and β-Glcp-(1→ in the side chain. Morphological analysis using scanning electron microscopy (SEM) and atomic force microscopy (AFM) indicated that OFP had a multi-branched structure, and the sugar chain molecules of polysaccharide appeared aggregated. OFP was found to exhibit anti-inflammatory activity by reducing the secretion of inflammatory factors in RAW264.7 cells and by decreasing the extent of xylene-induced ear swelling in mice.

2021 ◽  
Vol 14 (7) ◽  
pp. 692
Author(s):  
Ryldene Marques Duarte da Cruz ◽  
Francisco Jaime Bezerra Mendonça-Junior ◽  
Natália Barbosa de Mélo ◽  
Luciana Scotti ◽  
Rodrigo Santos Aquino de Araújo ◽  
...  

Rheumatoid arthritis, arthrosis and gout, among other chronic inflammatory diseases are public health problems and represent major therapeutic challenges. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed clinical treatments, despite their severe side effects and their exclusive action in improving symptoms, without effectively promoting the cure. However, recent advances in the fields of pharmacology, medicinal chemistry, and chemoinformatics have provided valuable information and opportunities for development of new anti-inflammatory drug candidates. For drug design and discovery, thiophene derivatives are privileged structures. Thiophene-based compounds, like the commercial drugs Tinoridine and Tiaprofenic acid, are known for their anti-inflammatory properties. The present review provides an update on the role of thiophene-based derivatives in inflammation. Studies on mechanisms of action, interactions with receptors (especially against cyclooxygenase (COX) and lipoxygenase (LOX)), and structure-activity relationships are also presented and discussed. The results demonstrate the importance of thiophene-based compounds as privileged structures for the design and discovery of novel anti-inflammatory agents. The studies reveal important structural characteristics. The presence of carboxylic acids, esters, amines, and amides, as well as methyl and methoxy groups, has been frequently described, and highlights the importance of these groups for anti-inflammatory activity and biological target recognition, especially for inhibition of COX and LOX enzymes.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2185 ◽  
Author(s):  
Xiaoxu Gao ◽  
Jiangchun Wei ◽  
Lina Hong ◽  
Sanpeng Fan ◽  
Gaosheng Hu ◽  
...  

Herba Siegesbeckiae (HS), derived from the aerial parts of three plants, Siegesbeckia orientalis (SO), S. glabrescens (SG), and S. pubescens (SP), has been used for the treatment of inflammatory diseases in China for centuries. In the present study, hydrodistillation was applied to extract essential oils from dried SO, SG, and SP aerial parts, and chemical composition analysis by gas chromatography–mass spectrometry (GC-MS) led to the identification of a total of 148 compounds (56 in SO, 62 in SG, and 59 in SP). The main components in the essential oils of SO, SG, and SP differed significantly. In vitro anti-inflammatory activity assays showed that SP essential oils (IC50, 0.97 μg/mL) significantly reduced the ability of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages to release NO, and the SO essential oil (IC50, 14.99 μg/mL) was better than the others at inhibiting the LPS-induced release of cytokine IL-6. Furthermore, the essential oils exhibited antitumor activities (IC50, 37.72–123.16 μg/mL) against Hep3B (liver) and Hela (cervical) cells. Linear regression analysis showed that, caryophyllene oxide peak area percentages showed remarkably high negative correlation coefficients with IC50 values of Hep3B and Hela cytotoxicity, which suggested the contribution of this compound on the cancer cell cytotoxicity of three essential oils. Finally, the ITS1-5.8S-ITS2 region was amplified and sequenced in order to generate genomic reference sequences for each plant. These can be used to identify the origins of the plants, and will assist other research studies related to these three plants.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1619
Author(s):  
Jae-Hoon Lee ◽  
Yun-Yeol Lee ◽  
Jangho Lee ◽  
Young-Jin Jang ◽  
Hae-Won Jang

Schisandra chinensis (Turcz.) Baill., which is known as omija in South Korea, is mainly cultivated in East Asia. The present study aimed to investigate the chemical composition of essential oil from the omija (OMEO) fruit obtained by supercritical fluid extraction using CO2 and to confirm the antioxidant and anti-inflammatory activity of OMEO using HaCaT human keratinocyte and RAW 264.7 murine macrophages. As a result of the chemical composition analysis of OMEO using gas chromatography-mass spectrometry, a total of 41 compounds were identified. The detailed analysis results are sesquiterpenoids (16), monoterpenoids (14), ketones (4), alcohols (3), aldehydes (2), acids (1), and aromatic hydrocarbons (1). OMEO significantly reduced the increased ROS levels in HaCaT keratinocytes induced by UV-B irradiation (p < 0.05). It was confirmed that 5 compounds (α-pinene, camphene, β-myrcene, 2-nonanone, and nerolidol) present in OMEO exhibited inhibitory activity on ROS production. Furthermore, OMEO showed excellent anti-inflammatory activity in RAW 264.7 macrophages induced by lipopolysaccharide. OMEO effectively inhibited NO production (p < 0.05) by suppressing the expression of the iNOS protein. Finally, OMEO was investigated for exhibition of anti-inflammatory activity by inhibiting the activation of NF-κB pathway. Taken together, OMEO could be used as a functional food ingredient with excellent antioxidant and anti-inflammatory activity.


2018 ◽  
Vol 74 (10) ◽  
pp. 1171-1179 ◽  
Author(s):  
Ning Li ◽  
Xianyong Bai ◽  
Lianshuang Zhang ◽  
Yun Hou

3,5-Bis(arylidene)-4-piperidone (BAP) derivatives display good antitumour and anti-inflammatory activities because of their double α,β-unsaturated ketone structural characteristics. If N-benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti-inflammatory activities should improve. Four N-benzenesulfonyl BAPs, namely (3E,5E)-1-(4-methylbenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, (4), (3E,5E)-1-(4-fluorobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one, C27H18F7NO3S, (5), (3E,5E)-1-(4-nitrobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one, C27H18F6N2O5S, (6), and (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, (7), were prepared by Claisen–Schmidt condensation and N-sulfonylation. They were characterized by NMR, FT–IR and HRMS (high resolution mass spectrometry). Single-crystal structure analysis reveals that the two 4-(trifluoromethyl)phenyl rings on both sides of the piperidone ring in (4)–(7) adopt an E stereochemistry of the olefinic double bonds. Molecules of both (4) and (6) are connected by hydrogen bonds into one-dimensional chains. In (5) and (7), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two-dimensional sheet. The anti-inflammatory activity data reveal that (4)–(7) significantly inhibit LPS-induced interleukin (IL-6) and tumour necrosis factor (TNF-α) secretion. Most importantly, (6) and (7), with strong electron-withdrawing substituents, display more potential inhibitory effects than (4) and (5).


Author(s):  
Georgios Papagiouvannis ◽  
Panagiotis Theodosis-Nobelos ◽  
Paraskevi Tziona ◽  
Antonios Gavalas ◽  
Panos N. Kourounakis ◽  
...  

Aims: The aim of this work is to investigate the antioxidant and anti-inflammatory potency of novel gabapentin derivatives, which could be proven useful as neuroprotective agents. Background: Alzheimer’s Disease (AD) is one of the most common neurodegenerative disorders worldwide. Due to its multi-factorial character, no effective treatment has been obtained yet. In this direction, the multi-targeting compounds approach could be useful for the development of novel, more effective drugs against AD. Oxidative stress and inflammation are highly involved in the progression of neurodegeneration, while gabapentin has been investigated for the treatment of behavioral symptoms in AD. Objective: In this work, derivatives of cinnamic acid, trolox and 3,5-di-tertbutyl-4-hydroxybenzoic acid amidated with gabapentin methyl ester, were designed and studied. Compounds with these structural characteristics are expected to act in various biochemical pathways, affecting neurodegenerative processes. Methods: The designed compounds were synthesized with classical amidation methods, purified by flash column chromatography, and identified spectrometrically (1H-NMR and 13C-NMR). Their purity was determined by CHN elemental analysis. They were tested in vitro for their antioxidant and anti-inflammatory properties, and for their inhibitory effect on acetylcholinesterase. Their in vivo anti-inflammatory activity was also tested. Results: Those molecules incorporating an antioxidant moiety possessed inhibitory activity against rat microsomal membrane lipid peroxidation and oxidative protein glycation, as well as radical scavenging activity. Moreover, most of them presented moderate inhibition towards lipoxygenase (up to 51% at 100μΜ) and acetylcholinesterase (AchE) (IC50 up to 274μΜ) activities. Finally, all synthesized compounds presented in vivo anti-inflammatory activity, decreasing carrageenan-induced rat paw edema up to 53% and some of them could inhibit cyclooxygenase significantly. Conclusion: These results indicate that the designed compounds could be proven useful as multi-targeting molecules against AD, since they affect various biochemical pathways associated with neurodegeneration. Thus, more effective drugs can be obtained, and possible adverse effects of drug combination can be limited.


Author(s):  
Jingshuang Li ◽  
Hui Wang ◽  
Lili Zhang ◽  
Ni An ◽  
Wan Ni ◽  
...  

Abstract. Capsaicin, the main constituent in chili, is an extremely spicy vanillin alkaloid and is found in several Capsicum species in China. Traditionally, it has been used to treat inflammatory diseases such as allergic rhinitis, neuralgia after shingles, refractory female urethral syndrome, spontaneous recalcitrant anal pruritus, and solid tumors. Constant stimulation of the body by inflammatory factors can lead to chronic inflammation. Capsaicin possesses anti-inflammatory activity; however, the underlying mechanism is unknown. We investigated the effect of capsaicin on the secretion of macrophage inflammatory factors in a lipopolysaccharide-induced inflammation model using 56 healthy, SPF grade, BALB/c mice. To this end, mice peritoneal macrophages were isolated and stimulated with lipopolysaccharide (1 μg/mL) and capsaicin (25, 50, 75, or 100 μg/mL) for 24 h. At all concentrations tested, capsaicin significantly promoted the phagocytosis of neutral red dye by macrophages. Furthermore, the gene expression and secretion of inflammatory cytokines significantly increased after induction with lipopolysaccharide (P<0.01); the interleukin (IL)-6 level was 204 μg/mL, tumor necrosis factor (TNF)-α level was 860 μg/mL, and nitric oxide (NO) level was 19.8 μg/mL. However, the treatment with capsaicin reduced their levels (P<0.01) and protein expression of lipopolysaccharide-induced extracellular signal-related kinase 1/2 and p65 (P<0.05). Overall, capsaicin reduced the secretion of inflammatory cytokines (P<0.01), interleukins, TNF-α (P<0.01), and NO by inhibiting the nuclear factor-kappa B and microtubule-associated protein kinase signaling pathways, and thereby reduced lipopolysaccharide-induced inflammatory response in macrophages.


2003 ◽  
Vol 58 (5-6) ◽  
pp. 342-346 ◽  
Author(s):  
Bernadete P. da Silva ◽  
Graziela M. Silva ◽  
José P. Parente

AbstractA polysaccharide, an α-ᴅ -glucan with an apparent molecular weight of 6.85×104, called PSa glucan, was isolated from fresh seeds of Sorghum arundinaceum by fractionation on Sephacryl S-300 HR and Sephadex G-25. Chemical and spectroscopic studies indicated that it has a highly branched glucan type structure composed of α-(154) linked d-glucopyranose residues with (1→3), (1→6) branching points, and a significant amount of α-(1→6) branching to α-(1→3) linked ᴅ -glucopyranose residues. The anti-inflammatory activity of the polysaccharide was performed using the capillary permeability assay.


Sign in / Sign up

Export Citation Format

Share Document