scholarly journals Metal Emulsion-Based Synthesis, Characterization, and Properties of Sn-Based Microsphere Phase Change Materials

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7449
Author(s):  
Xiali Zheng ◽  
Wei Luo ◽  
Yun Yu ◽  
Zebin Xue ◽  
Yifan Zheng ◽  
...  

A comparative study of the metal emulsion-based synthesis of Sn-based materials in two different types of molten salts (namely LiCl–KCl–CsCl and LiNO3-NaNO3-KNO3 eutectics) is presented, and the properties of Sn, Sn-Cu and Sn-Cu-Zn microsphere phase change materials prepared in chloride salts are evaluated by differential scanning calorimetry (DSC) to understand the effect of element doping. Despite a high ultrasonic power (e.g., 600 W or above) being required for dispersing liquid Sn in the chloride system, well-shaped Sn microspheres with a relatively narrow size range, e.g., about 1 to 15 µm or several micrometers to around 30 µm, can be prepared by adjusting the ultrasonic power (840–1080 W), sonication time (5–10 min) and the volume ratio of salts to metal (25:1–200:1). Such a method can be extended to the synthesis of Sn-based alloy microspheres, e.g., Sn-Cu and Sn-Cu-Zn microspheres. In the nitrate system, however, a very low ultrasonic power (e.g., 12 W) can be used to disperse liquid Sn, and the particles obtained are much smaller. At low ultrasonic power (e.g., 12 W), the particle size is generally less than 10 or 4 µm when the sonication time reaches 2 or 5 min, and at high ultrasonic power, it is typically in the range of hundreds of nanometers to 2 µm, regardless of the change in ultrasonic power (480–1080 W), irradiation time (5–10 min), or volume ratio of salts to metal (25:1–1000:1). In addition, the appearance of a SnO phase in the products prepared under different conditions hints at the occurrence of a reaction between Sn droplets and O2 in situ generated by the ultrasound-induced decomposition of nitrates, and such an interfacial reaction is believed to be responsible for these differences observed in two different molten salt systems. A DSC study of Sn, Sn-Cu, and Sn-Cu-Zn microspheres encapsulated in SiO2 reveals that Cu (0.3–0.9 wt.%) or Cu-Zn (0.9 wt.% Cu and 0.6% Zn) doping can raise the onset freezing temperature and thus suppress the undercooling of Sn, but a broad freezing peak observed in these doped microspheres, along with a still much higher undercooling compared to those of reported Sn-Cu or Sn-Cu-Zn solders, suggests the existence of a size effect, and that a low temperature is still needed for totally releasing latent heat. Since the chloride salts can be recycled by means of the evaporation of water and are stable at high temperature, our results indicate that the LiCl–KCl–CsCl salt-based metal emulsion method might also serve as an environmentally friendly method for the synthesis of other metals and their alloy microspheres.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shafiq Ishak ◽  
Soumen Mandal ◽  
Han-Seung Lee ◽  
Jitendra Kumar Singh

AbstractLauric acid (LA) has been recommended as economic, eco-friendly, and commercially viable materials to be used as phase change materials (PCMs). Nevertheless, there is lack of optimized parameters to produce microencapsulated PCMs with good performance. In this study, different amounts of LA have been chosen as core materials while tetraethyl orthosilicate (TEOS) as the precursor solution to form silicon dioxide (SiO2) shell. The pH of precursor solution was kept at 2.5 for all composition of microencapsulated LA. The synthesized microencapsulated LA/SiO2 has been characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The SEM and TEM confirm the microencapsulation of LA with SiO2. Thermogravimetric analysis (TGA) revealed better thermal stability of microencapsulated LA/SiO2 compared to pure LA. PCM with 50% LA i.e. LAPC-6 exhibited the highest encapsulation efficiency (96.50%) and encapsulation ratio (96.15%) through Differential scanning calorimetry (DSC) as well as good thermal reliability even after 30th cycle of heating and cooling process.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 107
Author(s):  
Evelyn Reyes-Cueva ◽  
Juan Francisco Nicolalde ◽  
Javier Martínez-Gómez

Environmental problems have been associated with energy consumption and waste management. A solution is the development of renewable materials such as organic phase change materials. Characterization of new materials allows knowing their applications and simulations provide an idea of how they can developed. Consequently, this research is focused on the thermal and chemical characterization of five different avocado seed oils depending on the maturity stage of the seed: 100% unripe, 25% mature-75% unripe, 50% mature-50% unripe, 75% mature-25% unripe, and 100% mature. The characterization was performed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The best oil for natural environments corresponded to 100% matured seed with an enthalpy of fusion of 52.93 J·g−1, and a degradation temperature between 241–545 °C. In addition, the FTIR analysis shows that unripe seed oil seems to contain more lipids than a mature one. Furthermore, a simulation with an isothermal box was conducted with the characterized oil with an initial temperature of −14 °C for the isothermal box, −27 °C for the PCM box, and an ambient temperature of 25 °C. The results show that without the PCM the temperature can reach −8 °C and with it is −12 °C after 7 h, proving its application as a cold thermal energy system.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7223
Author(s):  
Marco A. Orozco ◽  
Karen Acurio ◽  
Francis Vásquez-Aza ◽  
Javier Martínez-Gómez ◽  
Andres Chico-Proano

This study presents the energy storage potential of nitrate salts for specific applications in energy systems that use renewable resources. For this, the thermal, chemical, and morphological characterization of 11 samples of nitrate salts as phase change materials (PCM) was conducted. Specifically, sodium nitrate (NaNO3), sodium nitrite (NaNO2), and potassium nitrate (KNO3) were considered as base materials; and various binary and ternary mixtures were evaluated. For the evaluation of the materials, differential Fourier transform infrared spectroscopy (FTIR), scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to identify the temperature and enthalpy of phase change, thermal stability, microstructure, and the identification of functional groups were applied. Among the relevant results, sodium nitrite presented the highest phase change enthalpy of 220.7 J/g, and the mixture of 50% NaNO3 and 50% NaNO2 presented an enthalpy of 185.6 J/g with a phase change start and end temperature of 228.4 and 238.6 °C, respectively. This result indicates that sodium nitrite mixtures allow the thermal storage capacity of PCMs to increase. In conclusion, these materials are suitable for medium and high-temperature thermal energy storage systems due to their thermal and chemical stability, and high thermal storage capacity.


2018 ◽  
Vol 8 (1) ◽  
pp. 66 ◽  
Author(s):  
Stéphane Gibout ◽  
Erwin Franquet ◽  
Didier Haillot ◽  
Jean-Pierre Bédécarrats ◽  
Jean-Pierre Dumas

2019 ◽  
Vol 9 (2) ◽  
pp. 225 ◽  
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Nicolas Lardon ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

As global energy demand increases while primary sources and fossil fuels’ availability decrease, research has shifted its focus to thermal energy storage systems as alternative technologies able to cover for the mismatch between demand and supply. Among the different phase change materials available, esters possess particularly favorable properties with reported high enthalpies of fusion, low corrosivity, low toxicity, low supercooling, thermal and chemical stability as well as biodegradability and being derived from renewable feedstock. Despite such advantages, little to no data on the thermal behavior of esters is available due to low commercial availability. This study constitutes a continuation of previous works from the authors on the investigation of fatty esters as novel phase change materials. Here, methyl, pentyl and decyl esters of arachidic acid, and pentyl esters of myristic, palmitic, stearic and behenic acid are synthesized through Fischer esterification with high purities and their properties are studied. The chemical structures and purities are confirmed through Attenuated Total Reflectance Infrared Spectroscopy, Gas Chromatography coupled with Mass Spectroscopy and Nuclear Magnetic Resonance Spectroscopy, while the determination of the thermal properties is performed through Differential Scanning Calorimetry and Thermogravimetric Analysis. In conclusion, some correlations between the melting temperatures and the chemical structures are discovered, and the fatty esters are assessed based on their suitability as phase change materials for latent heat storage applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Liu ◽  
Yan Chen ◽  
Junwei Zhang ◽  
Junkai Gao ◽  
Zhi Han

Abstract Copper microsphere hybrid mesoporous carbon (MPC-Cu) was synthesized by the pyrolysis of polydopamine microspheres doped with copper ions that were prepared using a novel, facile and simple one-step method of dopamine biomimetic polymerization and copper ion adsorption. The resulting MPC-Cu was then used as a supporter for polyethylene glycol (PEG) to synthesize shape-stabilized phase change materials (PEG/MPC-Cu) with enhanced thermal properties. PEG/MPC-Cu was studied by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry and thermal constant analysis. The results demonstrated that the thermal conductivity of PEG/MPC-Cu was 0.502 W/(m K), which increased by 100% compared to pure PEG [0.251 W/(m K)]. The melting enthalpy of PEG/MPC-Cu was 95.98 J/g, indicating that PEG/MPC-Cu is a promising candidate for future thermal energy storage applications. In addition, the characterization results suggested that PEG-MPC-Cu possessed high thermal stability. Therefore, the method developed in this paper for preparing shape-stabilized phase change materials with improved thermal properties has substantial engineering application prospects.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 942 ◽  
Author(s):  
Rodrigo Fuentes-Sepúlveda ◽  
Claudio García-Herrera ◽  
Diego A. Vasco ◽  
Carlos Salinas-Lira ◽  
Rubén A. Ananías

The incorporation of phase change materials (PCM) in construction components has become an alternative to reduce the effect of thermal loads in buildings with low thermal inertia. This study put together the effective heat storage capacity of an organic phase change material (O-PCM, octadecane) with the construction and production potential of Pinus radiata in Chile. The wood is impregnated with octadecane by using the Bethell method, showing that it has good retention of the impregnator, and that its size was not modified. Differential scanning calorimetry analysis (DSC) showed that the composite material could achieve fusion enthalpy values from 36 (20.8 MJ/m3) to 122 J/g (108.9 MJ/m3). The transient line heat source method used, indicated that impregnation of Pinus radiata with octadecane increases its specific heat at temperatures from 15 to 20 °C, while its thermal conductivity decreases in the radial and the tangent directions, and increases in the longitudinal direction, showing a decrease in the orthotropic behavior of the wood. The ability of Pinus radiata wood to store latent heat positioned it as a candidate material to be considered in the building industry as a heat storage system.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4687
Author(s):  
Arnold Martínez ◽  
Mauricio Carmona ◽  
Cristóbal Cortés ◽  
Inmaculada Arauzo

The growing interest in developing applications for the storage of thermal energy (TES) is highly linked to the knowledge of the properties of the materials that will be used for that purpose. Likewise, the validity of representing processes through numerical simulations will depend on the accuracy of the thermal properties of the materials. The most relevant properties in the characterization of phase change materials (PCM) are the phase change enthalpy, thermal conductivity, heat capacity and density. Differential scanning calorimetry (DSC) is the most widely used technique for determining thermophysical properties. However, several unconventional methods have been proposed in the literature, mainly due to overcome the limitations of DSC, namely, the small sample required which is unsuitable for studying inhomogeneous materials. This paper presents the characterization of two commercial paraffins commonly used in TES applications, using methods such as T-history and T-melting, which were selected due to their simplicity, high reproducibility, and low cost of implementation. In order to evaluate the reliability of the methods, values calculated with the proposed alternative methods are compared with the results obtained by DSC measurements and with the manufacturer’s technical datasheet. Results obtained show that these non-conventional techniques can be used for the accurate estimation of selected thermal properties. A detailed discussion of the advantage and disadvantage of each method is given.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 736 ◽  
Author(s):  
Xingang Li ◽  
Lingyu Sun ◽  
Hong Sui ◽  
Lin He ◽  
Wei Yuan ◽  
...  

The heat released during the industrial gas adsorption (e.g., volatile organic compounds (VOCs)) on adsorbents (e.g., activated carbon) would lead to the risks of fire and explosion in the adsorption column. Herein, a novel highly-porous Vinylbenzyl chloride-Divinylbenzene (VBC-DVB) polymeric adsorbent was synthesized with embedded microcapsules (Hypercrosslinked VBC-DVB Beads (HVPM)). These microcapsules have a polydivinylbenzene-phase change materials (DVB-PCMs) core-shell structure. Paraffin wax was used as PCM filling in the spherical capsule. This microcapsules-embedded polymeric adsorbent HVPM (Φ1.5–2.0 mm) is found to possess a high specific surface area (~665 m²/g) and micropore-dominant structure. It also has heat storage capability indicated by DSC (Differential Scanning Calorimetry) analysis (11.1 J/g heat of fusion between 35.0 and 48.2 °C) for the encapsulated paraffin wax. The lab adsorption tests proved the capabilities of HVPM in adsorbing VOCs (toluene, 0.21 g/g) and controlling the temperature inside the adsorption column during the dynamic adsorption process, in which the temperature rise was lowered by 62.5%, relatively.


Sign in / Sign up

Export Citation Format

Share Document