scholarly journals Recent Advances in the Oxone-Mediated Synthesis of Heterocyclic Compounds

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7523
Author(s):  
Helen A. Goulart ◽  
Daniela R. Araujo ◽  
Filipe Penteado ◽  
Raquel G. Jacob ◽  
Gelson Perin ◽  
...  

Oxone is a commercially available oxidant, composed of a mixture of three inorganic species, being the potassium peroxymonosulfate (KHSO5) the reactive one. Over the past few decades, this cheap and environmentally friendly oxidant has become becoming a powerful tool in organic synthesis, being extensively employed to mediate the construction of a plethora of important compounds. This review summarizes the recent advances in the Oxone-mediated synthesis of N-, O- and chalcogen-containing heterocyclic compounds, through a wide diversity of reactions, starting from several kinds of substrate, highlighting the main synthetic differences, advantages, the scope and limitations.

2019 ◽  
Vol 23 (11) ◽  
pp. 1214-1238 ◽  
Author(s):  
Navjeet Kaur ◽  
Pranshu Bhardwaj ◽  
Meenu Devi ◽  
Yamini Verma ◽  
Neha Ahlawat ◽  
...  

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.


2020 ◽  
Vol 16 (4) ◽  
pp. 454-486 ◽  
Author(s):  
Smita Verma ◽  
Vishnuvardh Ravichandiran ◽  
Nihar Ranjan ◽  
Swaran J.S. Flora

Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4906
Author(s):  
Jurriën W. Collet ◽  
Thomas R. Roose ◽  
Bram Weijers ◽  
Bert U. W. Maes ◽  
Eelco Ruijter ◽  
...  

Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.


Author(s):  
Oluwaseyi Bukky Ovonramwen ◽  
Bodunde Joseph Owolabi ◽  
Amowie Philip Oviawe

Chalcones are useful intermediates in the synthesis of heterocyclic compound and the unique reagents in organic synthesis. The usual approach to obtain chalcones is through Claisen-Schmidt condensation. Several novel heterocyclic chalcone analogs have emerged. Chalcones are multifunctional molecules that possess promising pharmacological activities. Chalcones are known for anti-cancer, antioxidant, anti-inflammatory, anti-microbial, anti-tubercular, antileishmanial, antimalarial, anthelmintic, osteogenic activities. This review article focuses on recent applications of Claisen-Schmidt condensation reaction employed in the synthesis of chalcone, its transformation to heterocyclic compounds and pharmacological activities.


2019 ◽  
Vol 23 (18) ◽  
pp. 1945-1983
Author(s):  
Ankita Chaudhary

Arylglyoxals are important synthons that have been used in the construction of a diverse spectrum of compounds. The use of multicomponent approaches in organic synthesis due to its environmentally friendly nature is a step forward towards sustainability. This review will offer the reader insightful perspectives on the use of arylglyoxals for the synthesis of various heterocyclic compounds like pyrroles, pyrazoles, furans, imidazoles, indoles, oxazoles, pyridines, quinazolines, pyrans, etc using multicomponent approach.


Synthesis ◽  
2017 ◽  
Vol 50 (04) ◽  
pp. 711-722 ◽  
Author(s):  
Xiaodong Jia ◽  
Pengfei Li

tert-Butyl nitrite (TBN) is an important metal-free reagent that is widely applied in various organic transformations. Besides its traditional applications in nitrosation and diazotization, its ability to activate molecular oxygen to enable the initiation of radical reactions, including nitration, oximation, oxidation, and so on, has attracted extensively attention in the past decade. This review highlights recent advances in this field to promote further exploration of this versatile compound.1 Introduction2 Reactions Involving TBN2.1 Nitrosation2.2 Oximation2.3 Diazotization2.4 Nitration2.5 Oxidation2.6 Other Reactions3 Conclusion and Perspective


Synthesis ◽  
2020 ◽  
Vol 52 (05) ◽  
pp. 629-644 ◽  
Author(s):  
Heng Liu ◽  
Moris S. Eisen

Organo-f-complexes catalyzing small molecule transformations have been a hot topic in the past few years. Compared to other transformations, the hydroboration of C=X (X = C, N, O) unsaturated bonds serves as an important strategy to prepare organoborane derivatives, which are important intermediates in organic synthesis. This review outlines recent advances in organolanthanide and organoactinide complexes promoting the hydroboration of C=X containing substrates. After a brief introduction, three types of hydroboration will be presented: alkene hydroboration, carbonyl hydroboration, and imine and nitrile hydroborations. The catalytic performance, mechanism, and kinetic studies are discussed in detail, aiming to emphasize the catalytic differences between the diverse organo-f-catalysts. Additionally, challenges and future directions of this field are also presented.1 Introduction2 Alkene Hydroboration3 Carbonyl Hydroboration4 Imine and Nitrile Hydroboration5 Conclusions and Outlook


Synthesis ◽  
2020 ◽  
Vol 52 (23) ◽  
pp. 3564-3576 ◽  
Author(s):  
Ilya P. Filippov ◽  
Gleb D. Titov ◽  
Nikolai V. Rostovskii

AbstractDiazo compounds display versatile reactivity and therefore are widely used in organic synthesis. Diazo compounds bearing a 2-pyridyl or a related azine moiety on the diazo carbon exist in the form of fused 1,2,3-triazoles. In this short review, we summarize the recent advances in denitrogenative reactions of [1,2,3]triazolo[1,5-a]pyridines (‘pyridotriazoles’) and related fused 1,2,3-triazoles. Over the past decade, there has been a surge of activity in this field, with novel denitrogenative reactions of pyridotriazoles induced by metal compounds, light, and Brønsted and Lewis acids having been devised. As a result, heterocyclic compounds and functionalized α-picolines as well as bio­active molecules have been synthesized. In the review, emphasis is also placed on the mechanisms of the new reactions.1 Introduction2 Ring-Chain Isomerization of Pyridotriazoles3 Metal-Catalyzed Reactions3.1 Rh(II) Catalysis3.2 Rh(III) Catalysis3.3 Cu Catalysis3.4 Pd Catalysis3.5 Catalysis by Other Metals4 Metal-Free Reactions5 Conclusion


2021 ◽  
Vol 14 (7) ◽  
pp. 661
Author(s):  
Thierry Besson ◽  
Corinne Fruit

Transition-metal-free direct arylation of C-H or N-H bonds is one of the key emerging methodologies that is currently attracting tremendous attention. Diaryliodonium salts serve as a stepping stone on the way to alternative environmentally friendly and straightforward pathways for the construction of C-C and C-heteroatom bonds. In this review, we emphasize the recent synthetic advances of late-stage C(sp2)-N and C(sp2)-C(sp2) bond-forming reactions under metal-free conditions using diaryliodonium salts as arylating reagent and its applications to the synthesis of new arylated bioactive heterocyclic compounds.


2020 ◽  
Vol 24 (22) ◽  
pp. 2527-2554
Author(s):  
Trimurti L. Lambat ◽  
Paavan Kavi Param Gaitry Chopra ◽  
Sami H. Mahmood

Microwave Mediated Organic Synthesis (MMOS) is typical on the proficient heat shift carried out by dielectric heating, which in turn, is primarily dependent on the capability of the reagent or solvent to take up microwave energy. The employment of microwave energy has witnessed a fast expansion in the past two decades, with novel and pioneering applications in peptide and organic synthesis, material sciences, polymer chemistry, biochemical processes and nanotechnology. This review summarizes current MW- mediated catalytic reactions in use for the synthesis of a diversity of N-heterocycles by Multi- Component Reactions (MCRs) and a variety of miscellaneous reactions. In addition, the review addresses some aspects of the use of nanoparticles for a diversity of applications in microwave chemistry.


Sign in / Sign up

Export Citation Format

Share Document