scholarly journals Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 167
Author(s):  
Seyed Hossein Shahcheraghi ◽  
Fateme Salemi ◽  
Niloufar Peirovi ◽  
Jamshid Ayatollahi ◽  
Waqas Alam ◽  
...  

Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc–curcumin Zn (II)–curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc–curcumin Zn (II)–curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Si Huang ◽  
Haiyan Yuan ◽  
Wenqun Li ◽  
Xinyi Liu ◽  
Xiaojie Zhang ◽  
...  

Polygonatum sibiricum, a well-known life-prolonging tonic in Chinese medicine, has been widely used for nourishing nerves in the orient, but the underlying molecular mechanisms remain unclear. In this study, we found that P. sibiricum polysaccharides (PSP) ameliorated 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine- (MPTP-) induced locomotor activity deficiency and dopaminergic neuronal loss in an in vivo Parkinson’s disease (PD) mouse model. Additionally, PSP pretreatment inhibited N-methyl-4-phenylpyridine (MPP+) induced the production of reactive oxygen species, increasing the ratio of reduced glutathione/oxidized glutathione. In vitro experiments showed that PSP promoted the proliferation of N2a cells in a dose-dependent manner, while exhibiting effects against oxidative stress and neuronal apoptosis elicited by MPP+. These effects were found to be associated with the activation of Akt/mTOR-mediated p70S6K and 4E-BP1 signaling pathways, as well as nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (Gclc), and glutamate-cysteine ligase modulatory subunit (Gclm), resulting in antiapoptotic and antioxidative effects. Meanwhile, PSP exhibited no chronic toxicity in C57BJ/6 mice. Together, our results suggest that PSP can serve as a promising therapeutic candidate with neuroprotective properties in preventing PD.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Dawei Cai ◽  
Thomas W. Huff ◽  
Jun Liu ◽  
Tangbo Yuan ◽  
Zijian Wei ◽  
...  

Sinapic acid (SA) modulates the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in chondrocytes. In order to test the hypothesis that SA is protective against the development of osteoarthritis (OA), primary mouse chondrocytes were treated in vitro with SA and the promoter transactivation activity of heme oxygenase 1 (HO-1), nuclear translocation of Nrf2, and protein expression of HO-1 were assayed. To test the hypothesis in vivo, a destabilization of the medial meniscus (DMM) model was used to induce OA in the knees of mice and SA was delivered orally to the experimental group. The chondrocytes were harvested for further analysis. The expression of HO-1 was similarly upregulated in cartilage from both the experimental mice and human chondrocytes from osteoarthritic knees. SA was found to enhance the promoter transactivation activity of heme oxygenase 1 (HO-1) and increase the expression of Nrf2 and HO-1 in primary chondrocytes. Histopathologic scores showed that the damage induced by the DMM model was significantly lower in the SA treatment group. The addition of a HO-1 inhibitor with SA did not show additional benefit over SA alone in terms of cartilage degradation or histopathologic scores. The expression of TNF-α, IL-1β, IL-6, MMP-1, MMP-3, MMP-13, ADAMTS4, and ADAMTS5 was significantly reduced both in vitro and in vivo by the presence of SA. Protein expressions of HO-1 and Nrf2 were substantially increased in knee cartilage of mice that received oral SA. Our results suggest that SA should be further explored as a preventative treatment for OA.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Chan Lee ◽  
Gyu Hwan Park ◽  
Seong-Ryong Lee ◽  
Jung-Hee Jang

β-amyloid peptide (Aβ), a major component of senile plaques, plays important roles in neuropathology of Alzheimer's disease (AD). An array ofin vitroandin vivodata indicates that Aβ-induced neuronal death is mediated by oxidative stress. In this study, we aimed to investigate effects of sulforaphane (SUL), an isothiocyanate in cruciferous vegetables, on Aβ-induced oxidative cell death in SH-SY5Y cells. Cells treated with Aβ25–35exhibited decreased cell viability and underwent apoptosis as determined by MTT assay and TUNEL, respectively. Aβ25–35-induced cytotoxicity and apoptotic characteristics such as activation of c-JNK, dissipation of mitochondrial membrane potential, altered expression of Bcl-2 family proteins, and DNA fragmentation were effectively attenuated by SUL pretreatment. The antiapoptotic activity of SUL seemed to be mediated by inhibition of intracellular accumulation of reactive oxygen species and oxidative damages. SUL exerted antioxidant potential by upregulating expression of antioxidant enzymes includingγ-glutamylcysteine ligase, NAD(P)H:quinone oxidoreductase-1, and heme oxygenase-1 via activation of NF-E2-related factor 2(Nrf2). The protective effect of SUL against Aβ25–35-induced apoptotic cell death was abolished by siRNA of Nrf2. Taken together, the results suggest that pharmacologic activation of Nrf2 signaling pathway by SUL might be a practical prevention and/or protective treatment for the management of AD.


Author(s):  
Junrui Cheng ◽  
Abdulkerim Eroglu

ABSTRACT Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2–related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase–signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 440
Author(s):  
Oh Yun Kwon ◽  
Seung Ho Lee

Many neurodegenerative diseases have several similar cellular dysregulations. We investigated the inhibitory role of Ishige okamurae, an edible brown alga, on neurodegenerative processes by estimating the effects of Ishige okamurae on excitotoxicity induced by glutamate in vitro and neurodegeneration induced by trimethyltin (TMT) in vivo. This study aimed to describe the molecular mechanisms responsible for the mediating anti-neurodegenerative effects of Ishige okamurae extract (IOE). The oral administration of IOE to TMT-injected mice impeded the TMT-mediated short- and long-term memory impairments investigated by the Morris water maze and Y-maze test. IOE attenuated TMT-mediated cellular apoptosis and the expression of brain-derived neurotrophic factor, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in mice brains. Glutamate-induced apoptosis and the expression of reactive oxygen species, Nrf2, and HO-1 in HT22 cells were also attenuated by IOE. In addition, TMT- and glutamate-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in mouse brain tissues and HT22 cells were attenuated by the treatment of IOE. In HT22 cells, administration of MAPK inhibitors recovered the glutamate induced by the expression of Nrf2, HO-1, and cellular dysregulation to the equal extent to IOE administration. Taken together, these results suggest that IOE could attenuate neurodegenerative processes, such as TMT- and glutamate-mediated neuronal dysregulation, by regulating MAPKs/Nrf-2/HO-1 antioxidant pathways.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2963
Author(s):  
Juan Chen ◽  
Yixuan Chen ◽  
Yangfan Zheng ◽  
Jiawen Zhao ◽  
Huilin Yu ◽  
...  

This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 μg/mL) or N-Acetyl-L-cysteine (NAC) (20 μM) for 24 h, and then incubated with 200 μM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 μM) or PCs (4, 8 or 16 μg/mL) in the absence or presence of 300 μM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.


2021 ◽  
Author(s):  
Ding-Chao Zhu ◽  
Yi-Han Wang ◽  
Jia-Hao Lin ◽  
Zhi-Min Miao ◽  
Jia-Jing Xu ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and...


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 450
Author(s):  
Kensuke Mitsunari ◽  
Yasuyoshi Miyata ◽  
Tomohiro Matsuo ◽  
Yuta Mukae ◽  
Asato Otsubo ◽  
...  

Benign prostatic hyperplasia (BPH) is arguably the most common benign disease among men. This disease is often associated with lower urinary tract symptoms (LUTS) in men and significantly decreases the quality of life. Polyphenol consumption reportedly plays an important role in the prevention of many diseases, including BPH. In recent years, in addition to disease prevention, many studies have reported the efficacy and safety of polyphenol treatment against various pathological conditions in vivo and in vitro. Furthermore, numerous studies have also revealed the molecular mechanisms of the antioxidant and anti-inflammatory effects of polyphenols. We believe that an improved understanding of the detailed pharmacological roles of polyphenol-induced activities at a molecular level is important for the prevention and treatment of BPH. Polyphenols are composed of many members, and their biological roles differ. In this review, we first provide information regarding the pathological roles of oxidative stress and inflammation in BPH. Next, the antioxidant and anti-inflammatory effects of polyphenols, including those of flavonoids and non-flavonoids, are discussed. Finally, we talk about the results and limitations of previous clinical trials that have used polyphenols in BPH, with particular focus on their molecular mechanisms of action.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guosheng Lin ◽  
Dandan Luo ◽  
Jingjing Liu ◽  
Xiaoli Wu ◽  
Jinfen Chen ◽  
...  

The effect of polysaccharides isolated from Dendrobium officinale (DOP) on acetaminophen- (APAP-) induced hepatotoxicity and the underlying mechanisms involved are investigated. Male Institute of Cancer Research (ICR) mice were randomly assigned to six groups: (1) control, (2) vehicle (APAP, 230 mg/kg), (3) N-acetylcysteine (100 mg/kg), (4) 50 mg/kg DOP, (5) 100 mg/kg DOP, and (6) 200 mg/kg DOP. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the serum and glutathione (GSH), malondialdehyde (MDA), catalase (CAT), total antioxidant capacity (T-AOC), myeloperoxidase (MPO), and reactive oxygen species (ROS) levels in the liver were determined after the death of the mice. The histological examination of the liver was also performed. The effect of DOP on the Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was evaluated using Western blot analysis and real-time polymerase chain reaction (PCR). The results showed that DOP treatment significantly alleviated the hepatic injury. The decrease in ALT and AST levels in the serum and ROS, MDA, and MPO contents in the liver, as well as the increases in GSH, CAT, and T-AOC in the liver, were observed after DOP treatment. DOP treatment significantly induced the dissociation of Nrf2 from the Nrf2−Keap1 complex and promoted the Nrf2 nuclear translocation. Subsequently, DOP-mediated Nrf2 activation triggered the transcription and expressions of the glutamate–cysteine ligase catalytic (GCLC) subunit, glutamate–cysteine ligase regulatory subunit (GCLM), heme oxygenase-1 (HO-1), and NAD(P)H dehydrogenase quinone 1 (NQO1) in APAP-treated mice. The present study revealed that DOP treatment exerted potentially hepatoprotective effects against APAP-induced liver injury. Further investigation about mechanisms indicated that DOP exerted the hepatoprotective effect by suppressing the oxidative stress and activating the Nrf2−Keap1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document