scholarly journals “Cell-Free Synthetic Biology”: Synthetic Biology Meets Cell-Free Protein Synthesis

2019 ◽  
Vol 2 (4) ◽  
pp. 80
Author(s):  
Hong

Since Nirenberg and Matthaei used cell-free protein synthesis (CFPS) to elucidate the genetic code in the early 1960s [1], the technology has been developed over the course of decades and applied to studying both fundamental and applied biology [2]. Cell-free synthetic biology integrating CFPS with synthetic biology has received attention as a powerful and rapid approach to characterize and engineer natural biological systems. The open nature of cell-free (or in vitro) biological platforms compared to in vivo systems brings an unprecedented level of control and freedom in design [3]. This versatile engineering toolkit has been used for debugging biological networks, constructing artificial cells, screening protein libraries, prototyping genetic circuits, developing biosensors, producing metabolites, and synthesizing complex proteins including antibodies, toxic proteins, membrane proteins, and novel proteins containing nonstandard (unnatural) amino acids. The Methods and Protocols “Cell-Free Synthetic Biology” Special Issue consists of a series of reviews, protocols, benchmarks, and research articles describing the current development and applications of cell-free synthetic biology in diverse areas. [...]

2020 ◽  
Vol 17 (1) ◽  
pp. 13-20
Author(s):  
Owen Koucky ◽  
Jacob Wagner ◽  
Sofia Aguilera ◽  
Benjamin Bashaw ◽  
Queena Chen ◽  
...  

Synthetic biology integrates molecular biology tools and an engineering mindset to address challenges in medicine, agriculture, bioremediation, and biomanufacturing. A persistent problem in synthetic biology has been designing genetic circuits that produce predictable levels of protein. In 2013, Mutalik and colleagues developed bicistronic designs (BCDs) that make protein production more predicable in bacterial cells (in vivo). With the growing interest in producing proteins outside of cells (in vitro), we wanted to know if BCDs would work as predictably in cell-free protein synthesis (CFPS) as they do in E. coli cells. We tested 20 BCDs in CFPS and found they performed very similarly in vitro and in vivo. As a step toward developing methods for protein production in artificial cells, we also tested 3 BCDs inside nanoliter-scaled microfluidic droplets. The BCDs worked well in the microfluidic droplets, but their relative protein production levels were not as predictable as expected. These results suggest that the conditions under which gene expression happens in droplets result in a different relationship between genetic control elements such as BCDs and protein production than exists in batch CFPS or in cells. KEYWORDS: Bicistronic Design; Synthetic Biology; Cell-Free Protein Synthesis; Microfluidics


2017 ◽  
Vol 62 (33) ◽  
pp. 3851-3860
Author(s):  
Yang LIU ◽  
XiaoCui GUO ◽  
JinHui GENG ◽  
Yi JIAO ◽  
JinPeng HAN ◽  
...  

mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Pattarana Sae-Chew ◽  
Thidarat Rujirawat ◽  
Yothin Kumsang ◽  
Penpan Payattikul ◽  
Tassanee Lohnoo ◽  
...  

ABSTRACT Protein production relies on time-consuming genetic engineering and in vivo expression, which is a bottleneck for functional studies in the postgenomic era. Cell-free protein synthesis (CFPS) overcomes the limitation of in vivo protein biosynthesis by processing in vitro transcription and translation of multiple genes to proteins within hours. We employed an automated CFPS to simultaneously synthesize proteins from 24 genes of the oomycete Pythium insidiosum (which causes the life-threatening disease pythiosis) and screen for a diagnostic and therapeutic target. CFPS successfully synthesized 18 proteins (∼75% success rate). One protein, namely, I06, was explicitly recognized by all pythiosis sera, but not control sera, tested. Py. insidiosum secreted a significant amount of I06. The protein architecture of I06 is compatible with the oligopeptide elicitor (OPEL) of the phylogenetically related plant-pathogenic oomycete Phytophthora parasitica. The OPEL-like I06 protein of Py. insidiosum can stimulate host antibody responses, similar to the P. parasitica OPEL that triggers plant defense mechanisms. OPEL-like I06 homologs are present only in the oomycetes. Py. insidiosum contains two OPEL-like I06 homologs, but only one of the two homologs was expressed during hyphal growth. Twenty-nine homologs derived from 15 oomycetes can be phylogenetically divided into two groups. The OPEL-like genes might occur in the common ancestor, before independently undergoing gene gain and loss during the oomycete speciation. In conclusion, CFPS offers a fast in vitro protein synthesis. CFPS simultaneously generated multiple proteins of Py. insidiosum and facilitated the identification of the secretory OPEL-like I06 protein, a potential target for the development of a control measure against the pathogen. IMPORTANCE Technical limitations of conventional biotechnological methods (i.e., genetic engineering and protein synthesis) prevent extensive functional studies of the massive amounts of genetic information available today. We employed a cell-free protein synthesis system to rapidly and simultaneously generate multiple proteins from genetic codes of the oomycete Pythium insidiosum, which causes the life-threatening disease called pythiosis, in humans and animals worldwide. We aimed to screen for potential diagnostic and therapeutic protein targets of this pathogen. Eighteen proteins were synthesized. Of the 18 proteins, one was a secreted immunoreactive protein, called I06, that triggered host immunity and was recognized explicitly by all tested sera from pythiosis patients. It is one of the OPEL proteins; these proteins are present only in the unique group of microorganisms called oomycetes. Here, we demonstrated that cell-free protein synthesis was useful for the production of multiple proteins to facilitate functional studies and identify a potential target for diagnosis and treatment of pythiosis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Liyuan Zhang ◽  
Xiaomei Lin ◽  
Ting Wang ◽  
Wei Guo ◽  
Yuan Lu

AbstractCell-free protein synthesis (CFPS) systems have become an ideal choice for pathway prototyping, protein production, and biosensing, due to their high controllability, tolerance, stability, and ability to produce proteins in a short time. At present, the widely used CFPS systems are mainly based on Escherichia coli strain. Bacillus subtilis, Corynebacterium glutamate, and Vibrio natriegens are potential chassis cells for many biotechnological applications with their respective characteristics. Therefore, to expand the platform of the CFPS systems and options for protein production, four prokaryotes, E. coli, B. subtilis, C. glutamate, and V. natriegens were selected as host organisms to construct the CFPS systems and be compared. Moreover, the process parameters of the CFPS system were optimized, including the codon usage, plasmid synthesis competent cell selection, plasmid concentration, ribosomal binding site (RBS), and CFPS system reagent components. By optimizing and comparing the main influencing factors of different CFPS systems, the systems can be optimized directly for the most influential factors to further improve the protein yield of the systems. In addition, to demonstrate the applicability of the CFPS systems, it was proved that the four CFPS systems all had the potential to produce therapeutic proteins, and they could produce the receptor-binding domain (RBD) protein of SARS-CoV-2 with functional activity. They not only could expand the potential options for in vitro protein production, but also could increase the application range of the system by expanding the cell-free protein synthesis platform.


2014 ◽  
Vol 19 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Su-Jin Oh ◽  
Kyung-Ho Lee ◽  
Ho-Cheol Kim ◽  
Christy Catherine ◽  
Hyungdon Yun ◽  
...  

2012 ◽  
Vol 109 (38) ◽  
pp. 15217-15222 ◽  
Author(s):  
Tara L. Deans ◽  
Anirudha Singh ◽  
Matthew Gibson ◽  
Jennifer H. Elisseeff

Combining synthetic biology and materials science will enable more advanced studies of cellular regulatory processes, in addition to facilitating therapeutic applications of engineered gene networks. One approach is to couple genetic inducers into biomaterials, thereby generating 3D microenvironments that are capable of controlling intrinsic and extrinsic cellular events. Here, we have engineered biomaterials to present the genetic inducer, IPTG, with different modes of activating genetic circuits in vitro and in vivo. Gene circuits were activated in materials with IPTG embedded within the scaffold walls or chemically linked to the matrix. In addition, systemic applications of IPTG were used to induce genetic circuits in cells encapsulated into materials and implanted in vivo. The flexibility of modifying biomaterials with genetic inducers allows for patterned placement of these inducers that can be used to generate distinct patterns of gene expression. Together, these genetically interactive materials can be used to characterize genetic circuits in environments that more closely mimic cells’ natural 3D settings, to better explore complex cell–matrix and cell–cell interactions, and to facilitate therapeutic applications of synthetic biology.


Sign in / Sign up

Export Citation Format

Share Document