scholarly journals Enhancing Trust in Autonomous Vehicles through Intelligent User Interfaces That Mimic Human Behavior

2018 ◽  
Vol 2 (4) ◽  
pp. 62 ◽  
Author(s):  
Peter Ruijten ◽  
Jacques Terken ◽  
Sanjeev Chandramouli

Autonomous vehicles use sensors and artificial intelligence to drive themselves. Surveys indicate that people are fascinated by the idea of autonomous driving, but are hesitant to relinquish control of the vehicle. Lack of trust seems to be the core reason for these concerns. In order to address this, an intelligent agent approach was implemented, as it has been argued that human traits increase trust in interfaces. Where other approaches mainly use anthropomorphism to shape appearances, the current approach uses anthropomorphism to shape the interaction, applying Gricean maxims (i.e., guidelines for effective conversation). The contribution of this approach was tested in a simulator that employed both a graphical and a conversational user interface, which were rated on likability, perceived intelligence, trust, and anthropomorphism. Results show that the conversational interface was trusted, liked, and anthropomorphized more, and was perceived as more intelligent, than the graphical user interface. Additionally, an interface that was portrayed as more confident in making decisions scored higher on all four constructs than one that was portrayed as having low confidence. These results together indicate that equipping autonomous vehicles with interfaces that mimic human behavior may help increasing people’s trust in, and, consequently, their acceptance of them.

Author(s):  
Randall Spain ◽  
Jason Saville ◽  
Barry Lui ◽  
Donia Slack ◽  
Edward Hill ◽  
...  

Because advances in broadband capabilities will soon allow first responders to access and use many forms of data when responding to emergencies, it is becoming critically important to design heads-up displays to present first responders with information in a manner that does not induce extraneous mental workload or cause undue interaction errors. Virtual reality offers a unique medium for envisioning and testing user interface concepts in a realistic and controlled environment. In this paper, we describe a virtual reality-based emergency response scenario that was designed to support user experience research for evaluating the efficacy of intelligent user interfaces for firefighters. We describe the results of a usability test that captured firefighters’ feedback and reactions to the VR scenario and the prototype intelligent user interface that presented them with task critical information through the VR headset. The paper concludes with lessons learned from our development process and a discussion of plans for future research.


Author(s):  
Michał Bednarczyk

User interfaces are in continuous progress. As the computing power of modern machines grows, they become more user-friendly and intuitive. Not all solutions are widely accepted, sometimes they become only a “curiosity”, while another ones achieve success. Lately, some user interface designers strive for such solutions, in which the user will have the impression of “staying” or “permeation” of the system with reality and therefore some kind of software integration with the environment. This is achieved by various methods utilizing interfaces controlled by voice or touch. Quite spectacular and very interesting are solutions that integrate image generated by a computer with a real view. This technology is called AR – Augmented Reality, and is the core of the author’s considerations about its application in contemporary surveying and GIS practice. In this article, are presented issues related to the possibilities that lie in the use of this technology in the daily work of geo-engineer.


2021 ◽  
Author(s):  
Nauman Jalil

This chapter is intended to provide an overview of the Intelligent User Interfaces subject. The outline includes the basic concepts and terminology, a review of current technologies and recent developments in the field, common architectures used for the design of IUI systems, and finally the IUI applications. Intelligent user interfaces (IUIs) are attempting to address human-computer connection issues by offering innovative communication approaches and by listening to the user. Virtual reality is also an emerging IUI area that can be the popular interface of the future by integrating the technology into the environment so that at the same time it can be more real and invisible. The ultimate computer interface is more like interacting with the computer in a dialog, an interactive environment of virtual reality in which you can communicate. This chapter also explores a methodology for the design of situation-aware frameworks for the user interface that utilizes user and context inputs to provide details customized to the activities of the user in particular circumstances. In order to comply to the new situation, the user interface will reconfigure itself automatically. Adjusting the user interface to the actual situation and providing a reusable list of tasks in a given situation decreases operator memory loads. The challenge of pulling together the details needed by situation-aware decision support systems in a way that minimizes cognitive workload is not addressed by current user interface design.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingyuan Song ◽  
Wen Wang ◽  
Weiping Fu ◽  
Yuan Sun ◽  
Denggui Wang ◽  
...  

AbstractAutonomous vehicles for the intention of human behavior of the estimated traffic participants and their interaction is the main problem in automatic driving system. Classical cognitive theory assumes that the behavior of human traffic participants is completely reasonable when studying estimation of intention and interaction. However, according to the quantum cognition and decision theory as well as practical traffic cases, human behavior including traffic behavior is often unreasonable, which violates classical cognition and decision theory. Based on the quantum cognitive theory, this paper studies the cognitive problem of pedestrian crossing. Through the case analysis, it is proved that the Quantum-like Bayesian (QLB) model can consider the reasonability of pedestrians when crossing the street compared with the classical probability model, being more consistent with the actual situation. The experiment of trajectory prediction proves that the QLB model can cover the edge events in interactive scenes compared with the data-driven Social-LSTM model, being more consistent with the real trajectory. This paper provides a new reference for the research on the cognitive problem of intention on bounded rational behavior of human traffic participants in autonomous driving.


2020 ◽  
pp. 44-55
Author(s):  
Halyna A. Pidnebesna ◽  
◽  
Andrii V. Pavlov ◽  
Volodymyr S. Stepashko ◽  
◽  
...  

This paper is devoted to the analysis of sources in the field of development and building intelligent user interfaces. Particular attention is paid to presenting an ontology-based approach to constructing the architecture of the interface, the tasks arising during the development, and ways for solving them. An example of the construction of the intelligent user interface is given for software tools of inductive modeling based on the detailed analysis of knowledge structures in this domain.


Author(s):  
Jiayuan Dong ◽  
Emily Lawson ◽  
Jack Olsen ◽  
Myounghoon Jeon

Driving agents can provide an effective solution to improve drivers’ trust in and to manage interactions with autonomous vehicles. Research has focused on voice-agents, while few have explored robot-agents or the comparison between the two. The present study tested two variables - voice gender and agent embodiment, using conversational scripts. Twenty participants experienced autonomous driving using the simulator for four agent conditions and filled out subjective questionnaires for their perception of each agent. Results showed that the participants perceived the voice only female agent as more likeable, more comfortable, and more competent than other conditions. Their final preference ranking also favored this agent over the others. Interestingly, eye-tracking data showed that embodied agents did not add more visual distractions than the voice only agents. The results are discussed with the traditional gender stereotype, uncanny valley, and participants’ gender. This study can contribute to the design of in-vehicle agents in the autonomous vehicles and future studies are planned to further identify the underlying mechanisms of user perception on different agents.


Information ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 162
Author(s):  
Soyeon Kim ◽  
René van Egmond ◽  
Riender Happee

In automated driving, the user interface plays an essential role in guiding transitions between automated and manual driving. This literature review identified 25 studies that explicitly studied the effectiveness of user interfaces in automated driving. Our main selection criterion was how the user interface (UI) affected take-over performance in higher automation levels allowing drivers to take their eyes off the road (SAE3 and SAE4). We categorized user interface (UI) factors from an automated vehicle-related information perspective. Short take-over times are consistently associated with take-over requests (TORs) initiated by the auditory modality with high urgency levels. On the other hand, take-over requests directly displayed on non-driving-related task devices and augmented reality do not affect take-over time. Additional explanations of take-over situation, surrounding and vehicle information while driving, and take-over guiding information were found to improve situational awareness. Hence, we conclude that advanced user interfaces can enhance the safety and acceptance of automated driving. Most studies showed positive effects of advanced UI, but a number of studies showed no significant benefits, and a few studies showed negative effects of advanced UI, which may be associated with information overload. The occurrence of positive and negative results of similar UI concepts in different studies highlights the need for systematic UI testing across driving conditions and driver characteristics. Our findings propose future UI studies of automated vehicle focusing on trust calibration and enhancing situation awareness in various scenarios.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Sumbal Malik ◽  
Manzoor Ahmed Khan ◽  
Hesham El-Sayed

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.


Sign in / Sign up

Export Citation Format

Share Document