scholarly journals Collaborative Autonomous Driving—A Survey of Solution Approaches and Future Challenges

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Sumbal Malik ◽  
Manzoor Ahmed Khan ◽  
Hesham El-Sayed

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.

2016 ◽  
Vol 850 ◽  
pp. 16-22
Author(s):  
Özge Özdemir ◽  
İslam Kılıç ◽  
Ahmet Yazıcı ◽  
Kemal Özkan

An advanced driver assistance system (ADAS) is the premium technology for autonomous driving. It uses data from vision/camera systems, data from in vehicle sensors, and data from vehicle-to-vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communication systems. The next generation systems even autonomous vehicles are expected to use the V2V information to increase the safety for non-line of sight environments. Exchanging some data like vehicle position, speed, status etc., helps to the driver about potential problems, or to avoid collisions. In this paper, a V2V communication system module is designed and tested on the vehicles.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1221
Author(s):  
Anum Mushtaq ◽  
Irfan ul Haq ◽  
Wajih un Nabi ◽  
Asifullah Khan ◽  
Omair Shafiq

Connected Autonomous Vehicles (AVs) promise innovative solutions for traffic flow management, especially for congestion mitigation. Vehicle-to-Vehicle (V2V) communication depends on wireless technology where vehicles can communicate with each other about obstacles and make cooperative strategies to avoid these obstacles. Vehicle-to-Infrastructure (V2I) also helps vehicles to make use of infrastructural components to navigate through different paths. This paper proposes an approach based on swarm intelligence for the formation and evolution of platoons to maintain traffic flow during congestion and collision avoidance practices using V2V and V2I communications. In this paper, we present a two level approach to improve traffic flow of AVs. At the first level, we reduce the congestion by forming platoons and study how platooning helps vehicles deal with congestion or obstacles in uncertain situations. We performed experiments based on different challenging scenarios during the platoon’s formation and evolution. At the second level, we incorporate a collision avoidance mechanism using V2V and V2I infrastructures. We used SUMO, Omnet++ with veins for simulations. The results show significant improvement in performance in maintaining traffic flow.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1172 ◽  
Author(s):  
Eduard Zadobrischi ◽  
Lucian-Mihai Cosovanu ◽  
Mihai Dimian

The massive increase in the number of vehicles has set a precedent in terms of congestion, being one of the important factors affecting the flow of traffic, but there are also effects on the world economy. The studies carried out so far try to highlight solutions that will streamline the traffic, as society revolves around transportation and its symmetry. Current research highlights that the increased density of vehicles could be remedied by dedicated short-range communications (DSRC) systems through communications of the type vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) or vehicle-to-everything (V2X). We can say that wireless communication technologies have the potential to significantly change the efficiency and road safety, thus improving the efficiency of transport systems. An important factor is to comply with the requirements imposed on the use of vehicle safety and transport applications. Therefore, this paper focuses on several simulations on the basis of symmetry models, implemented in practical cases in order to streamline vehicle density and reduce traffic congestion. The scenarios aim at both the communication of the vehicles with each other and their prioritization by the infrastructure, so we can have a report on the efficiency of the proposed models.


Author(s):  
Francesco Biral ◽  
Enrico Bertolazzi ◽  
Daniele Bortoluzzi ◽  
Paolo Bosetti

In the last years a great effort has been devoted to the development of autonomous vehicles able to drive in a high range of speeds in semi-structured and unstructured environments. This article presents and discusses the software framework for Hardware-In-the-Loop (HIL) and Software-In-the-Loop (SIL) analysis that has been designed for developing and testing of control laws and mission functionalities of semi-autonomous and autonomous vehicles. The ultimate goal of this project is to develop a robotic system, named RUMBy, able to autonomously plan and execute accurate optimal manoeuvres both in normal and in critical driving situations and to be used as a test platform for advanced decision and autonomous driving algorithms. RUMBy’s hardware is a 1:6 scale gasoline engine R/C car with onboard telemetry and control systems. RUMBy’s software consists of three main modules: the manager module that coordinates the other modules and take high level decision; the motion planner module which is based on a Nonlinear Receding Horizon Control (NRHC) algorithm; the actuation module that produces the driving command for the vehicle. The article describes the details of RUMBy architecture and discusses its modular configuration that easily allows HIL and SIL tests.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3318 ◽  
Author(s):  
Carlos Martínez ◽  
Felipe Jiménez

Autonomous driving is undergoing huge developments nowadays. It is expected that its implementation will bring many benefits. Autonomous cars must deal with tasks at different levels. Although some of them are currently solved, and perception systems provide quite an accurate and complete description of the environment, high-level decisions are hard to obtain in challenging scenarios. Moreover, they must comply with safety, reliability and predictability requirements, road user acceptance, and comfort specifications. This paper presents a path planning algorithm based on potential fields. Potential models are adjusted so that their behavior is appropriate to the environment and the dynamics of the vehicle and they can face almost any unexpected scenarios. The response of the system considers the road characteristics (e.g., maximum speed, lane line curvature, etc.) and the presence of obstacles and other users. The algorithm has been tested on an automated vehicle equipped with a GPS receiver, an inertial measurement unit and a computer vision system in real environments with satisfactory results.


2019 ◽  
Vol 7 (2) ◽  
pp. 72-87 ◽  
Author(s):  
Serkan Ayvaz ◽  
Salih Cemil Cetin

Purpose The purpose of this paper is to develop a model for autonomous cars to establish trusted parties by combining distributed ledgers and self-driving cars in the traffic to provide single version of the truth and thus build public trust. Design/methodology/approach The model, which the authors call Witness of Things, is based on keeping decision logs of autonomous vehicles in distributed ledgers through the use of vehicular networks and vehicle-to-vehicle/vehicle-to-infrastructure (or vice versa) communications. The model provides a single version of the truth and thus helps enable the autonomous vehicle industry, related organizations and governmental institutions to discover the true causes of road accidents and their consequences in investigations. Findings In this paper, the authors explored one of the potential effects of blockchain protocol on autonomous vehicles. The framework provides a solution for operating autonomous cars in an untrusted environment without needing a central authority. The model can also be generalized and applied to other intelligent unmanned systems. Originality/value This study proposes a blockchain protocol-based record-keeping model for autonomous cars to establish trusted parties in the traffic and protect single version of the truth.


Author(s):  
Alejandro Fernandez Canosa ◽  
Baisravan HomChaudhuri

This paper presents a computationally-efficient fuel-economic control strategy for a group of connected vehicles in urban roads. We assume the availability of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Apart from fuel economy, the proposed higher-level controller also focuses on reducing red light idling, which improves traffic mobility and in turn improves vehicle emissions. The red light idling avoidance problem is formulated as a two-point boundary value problem and sampling-based approach is employed to evaluate a feasible solution in real-time. This leads to control solutions that can ensure avoidance of red light idling despite the number of vehicles in front of it. We have shown that sampling from a Gaussian distribution whose mean depends on the target velocity can improve fuel economy to a good extent. This higher-level control solution provides a good initial solution for any deterministic lower-level controller. Simulation results show the efficacy of the proposed method in terms of fuel economy and computational efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2380
Author(s):  
Wei Li ◽  
Kai Liu

Object detection is an indispensable part of autonomous driving. It is the basis of other high-level applications. For example, autonomous vehicles need to use the object detection results to navigate and avoid obstacles. In this paper, we propose a multi-scale MobileNeck module and an algorithm to improve the performance of an object detection model by outputting a series of Gaussian parameters. These Gaussian parameters can be used to predict both the locations of detected objects and the localization confidences. Based on the above two methods, a new confidence-aware Mobile Detection (MobileDet) model is proposed. The MobileNeck module and loss function are easy to conduct and integrate with Generalized-IoU (GIoU) metrics with slight changes in the code. We test the proposed model on the KITTI and VOC datasets. The mean Average Precision (mAP) is improved by 3.8 on the KITTI dataset and 2.9 on the VOC dataset with less resource consumption.


2020 ◽  
Vol 10 (16) ◽  
pp. 5655
Author(s):  
Miguel Ángel de Miguel ◽  
Francisco Miguel Moreno ◽  
Pablo Marín-Plaza ◽  
Abdulla Al-Kaff ◽  
Martín Palos ◽  
...  

This work presents a novel platform for autonomous vehicle technologies research for the insurance sector. The platform has been collaboratively developed by the insurance company MAPFRE-CESVIMAP, Universidad Carlos III de Madrid and INSIA of the Universidad Politécnica de Madrid. The high-level architecture and several autonomous vehicle technologies developed using the framework of this collaboration are introduced and described in this work. Computer vision technologies for environment perception, V2X communication capabilities, enhanced localization, human–machine interaction and self awareness are among the technologies which have been developed and tested. Some use cases that validate the technologies presented in the platform are also presented; these use cases include public demonstrations, tests of the technologies and international competitions for self-driving technologies.


Sign in / Sign up

Export Citation Format

Share Document