scholarly journals Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 605 ◽  
Author(s):  
Dorina Lauritano ◽  
Luisa Limongelli ◽  
Giulia Moreo ◽  
Gianfranco Favia ◽  
Francesco Carinci

Introduction. Several biomaterials are used in periodontal tissue engineering in order to obtain a three-dimensional scaffold, which could enhance the oral bone regeneration. These novel biomaterials, when placed in the affected area, activate a cascade of events, inducing regenerative cellular responses, and replacing the missing tissue. Natural and synthetic polymers can be used alone or in combination with other biomaterials, growth factors, and stem cells. Natural-based polymer chitosan is widely used in periodontal tissue engineering. It presents biodegradability, biocompatibility, and biological renewability properties. It is bacteriostatic and nontoxic and has hemostatic and mucoadhesive capacity. The aim of this systematic review is to obtain an updated overview of the utilization and effectiveness of chitosan-based scaffold (CS-bs) in the alveolar bone regeneration process. Materials and Methods. During database searching (using PubMed, Cochrane Library, and CINAHL), 72 items were found. The title, abstract, and full text of each study were carefully analyzed and only 22 articles were selected. Thirteen articles were excluded based on their title, five after reading the abstract, twenty-six after reading the full text, and six were not considered because of their publication date (prior to 2010). Quality assessment and data extraction were performed in the twelve included randomized controlled trials. Data concerning cell proliferation and viability (CPV), mineralization level (M), and alkaline phosphatase activity (ALPA) were recorded from each article Results. All the included trials tested CS-bs that were combined with other biomaterials (such as hydroxyapatite, alginate, polylactic-co-glycolic acid, polycaprolactone), growth factors (basic fibroblast growth factor, bone morphogenetic protein) and/or stem cells (periodontal ligament stem cells, human jaw bone marrow-derived mesenchymal stem cells). Values about the proliferation of cementoblasts (CB) and periodontal ligament cells (PDLCs), the activity of alkaline phosphatase, and the mineralization level determined by pure chitosan scaffolds resulted in lower than those caused by chitosan-based scaffolds combined with other molecules and biomaterials. Conclusions. A higher periodontal regenerative potential was recorded in the case of CS-based scaffolds combined with other polymeric biomaterials and bioceramics (bio compared to those provided by CS alone. Furthermore, literature demonstrated that the addition of growth factors and stem cells to CS-based scaffolds might improve the biological properties of chitosan.

2020 ◽  
Author(s):  
Yi Zhao ◽  
Qiaoli Zhai ◽  
Hong Liu ◽  
Xun Xi ◽  
Shuai Chen ◽  
...  

Abstract BackgroundPeriodontal disease is a common disease that compromises the integrity of tooth-supporting tissues. Bone regeneration is the ultimate goal of periodontal therapies, in which osteogenic differentiation of human periodontal ligament stem cells plays a critical role. The tripartite motif (TRIM)16 is downregulated in periodontal tissues of patients with periodontitis and involved in osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs).However, the role of TRIM16 in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is largely unknown.MethodshPDLSCs were isolated and identified by immunophenotype assays using flow cytometry. Overexpression plasmids and specific short-hairpin RNAs (shRNAs) were constructed to manipulate the expression of target molecules. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS) and enzyme‐linked immunosorbent assays (ELISA) were used to evaluate osteogenic potential capacity. Reverse transcription quantitative PCR (RT-qPCR) and Western blot analysis were performed to determine the expression of osteogenic-related markers and activation of relevant signaling pathways. Co-immunoprecipitation assays were performed to confirm the interactions between proteins and the ubiquitination of RUNX2. A LC-MS/MS analysis was performed to explore the different expression proteins in present of TRIM16.ResultsTRIM16 significantly promoted alkaline phosphatase activity and mineralized nodule formation, and positively regulated the osteogenic differentiation of hPDLSCs by enhancing protein expression of RUNX2, COL1A1 and OCN. Mechanistically, TRIM16 serves as a pivotal factor that stabilizes RUNX2 protein levels by decreasing CHIP-mediated K48-linked ubiquitination degradation of the RUNX2 protein. Besides, TRIM16 significantly increased expression of COL1A1 via activation of p38MAPK/RUNX2.ConclusionThis study identified a novel mechanism of TRIM16 in regulating stability of the RUNX2 protein, which may promote the osteogenic differentiation of hPDLSCs. TRIM16 may be a potential target of stem cell based-bone regeneration for periodontal therapies.


2012 ◽  
Vol 57 (9) ◽  
pp. 1241-1250 ◽  
Author(s):  
Yong Wen ◽  
Jing Lan ◽  
Haiyun Huang ◽  
Meijiao Yu ◽  
Jun Cui ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (70) ◽  
pp. 41161-41172 ◽  
Author(s):  
Zeqing Zhao ◽  
Jin Liu ◽  
Michael D. Weir ◽  
Ning Zhang ◽  
Li Zhang ◽  
...  

Human periodontal ligament stem cells (hPDLSCs) are promising for tissue engineering applications but have received relatively little attention.


2018 ◽  
Vol 35 (4) ◽  
pp. 290-298
Author(s):  
Eric M. Davis

The epithelial cell rests of Malassez (ERM) were first described in 1817, yet their significance has remained an enigma for more than 200 years. Given their embryological origins and persistence in adult periodontal tissue, recent research has investigated whether the ERM could be useful as stem cells to regenerate tissues lost as a consequence of periodontitis. The objective of this review is to describe results of studies that have vigorously investigated the functional capabilities of ERM, particularly with regard to periodontal ligament homeostasis and prevention of dentoalveolar ankylosis. The significance of the ERM relative to evolution of the dental attachment apparatus will be examined. The current status of use of ERM as stem cells for dental tissue engineering and in other applications will be reviewed.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2558
Author(s):  
Mihaela Olaru ◽  
Liliana Sachelarie ◽  
Gabriela Calin

With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan Li ◽  
Qi-lin Jiang ◽  
Leanne Van der Merwe ◽  
Dong-hao Lou ◽  
Cai Lin

Abstract Background A skin flap is one of the most critical surgical techniques for the restoration of cutaneous defects. However, the distal necrosis of the skin flap severely restricts the clinical application of flap surgery. As there is no consensus on the treatment methods to prevent distal necrosis of skin flaps, more effective and feasible interventions to prevent skin flaps from necrosis are urgently needed. Stem therapy as a potential method to improve the survival rate of skin flaps is receiving increasing attention. Methods This review followed the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statements. Twenty studies with 500 animals were included by searching Web of Science, EMBASE, PubMed, and Cochrane Library databases, up until October 8, 2020. Moreover, the references of the included articles were searched manually to obtain other studies. All analyses were conducted using Review Manager V.5.3 software. Results Meta-analysis of all 20 studies demonstrated stem cell treatment has significant effects on reducing necrosis of skin flap compared with the control group (SMD: 3.20, 95% CI 2.47 to 3.93). Besides, subgroup analysis showed differences in the efficacy of stem cells in improving the survival rate of skin flaps in areas of skin flap, cell type, transplant types, and method of administration of stem cells. The meta-analysis also showed that stem cell treatment had a significant effect on increasing blood vessel density (SMD: 2.96, 95% CI 2.21 to 3.72) and increasing the expression of vascular endothelial growth factor (VEGF, SMD: 4.34, 95% CI 2.48 to 6.1). Conclusions The preclinical evidence of our systematic review indicate that stem cell-based therapy is effective for promoting early angiogenesis by up regulating VEGF and ultimately improving the survival rate of skin flap. In summary, small area skin flap, the administration method of intra-arterial injection, ASCs and MSCs, and xenogenic stem cells from humans showed more effective for the survival of animal skin flaps. In general, stem cell-based therapy may be a promising method to prevent skin flap necrosis.


RMD Open ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e001647
Author(s):  
Andréa Marques ◽  
Eduardo Santos ◽  
Elena Nikiphorou ◽  
Ailsa Bosworth ◽  
Loreto Carmona

ObjectiveTo perform a systematic review (SR) on the effectiveness of self-management interventions, in order to inform the European League Against Rheumatism Recommendations for its implementation in patients with inflammatory arthritis (IA).MethodsThe SR was conducted according to the Cochrane Handbook and included adults (≥18 years) with IA. The search strategy was run in Medline through PubMed, Embase, Cochrane Library, CINAHL Plus with Full Text, and PEDro. The assessment of risk of bias, data extraction and synthesis were performed by two reviewers independently. A narrative Summary of Findings was provided according to the Grading of Recommendations, Assessment, Development and Evaluation.ResultsFrom a total 1577 references, 57 were selected for a full-text review, and 32 studies fulfilled the inclusion criteria (19 randomised controlled trials (RCTs) and 13 SRs). The most studied self-management components were specific interactive disease education in ten RCTs, problem solving in nine RCTs, cognitive–behavioural therapy in eight RCTs, goal setting in six RCTs, patient education in five RCTs and response training in two RCTs. The most studied interventions were multicomponent or single exercise/physical activity in six SRs, psychosocial interventions in five SRs and education in two SRs. Overall, all these specific components and interventions of self-management have beneficial effects on IAs-related outcomes.ConclusionsThe findings confirm the beneficial effect of the self-management interventions in IA and the importance of their implementation. Further research should focus on the understanding that self-management is a complex intervention to allow the isolation of the effectiveness of its different components.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


Sign in / Sign up

Export Citation Format

Share Document