scholarly journals Hard Dental Tissues Regeneration—Approaches and Challenges

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2558
Author(s):  
Mihaela Olaru ◽  
Liliana Sachelarie ◽  
Gabriela Calin

With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Fei Xing ◽  
Lang Li ◽  
Changchun Zhou ◽  
Cheng Long ◽  
Lina Wu ◽  
...  

It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.


2018 ◽  
Vol 6 (4) ◽  
pp. 72 ◽  
Author(s):  
Gianrico Spagnuolo ◽  
Bruna Codispoti ◽  
Massimo Marrelli ◽  
Carlo Rengo ◽  
Sandro Rengo ◽  
...  

Tissue engineering is based on the interaction between stem cells, biomaterials and factors delivered in biological niches. Oral tissues have been found to be rich in stem cells from different sources: Stem cells from oral cavity are easily harvestable and have shown a great plasticity towards the main lineages, specifically towards bone tissues. Dental pulp stem cells (DPSCs) are the most investigated mesenchymal stem cells (MSCs) from dental tissues, however, the oral cavity hosts several other stem cell lineages that have also been reported to be a good alternative in bone tissue engineering. In particular, the newly discovered population of mesenchymal stem cells derived from human periapical inflamed cysts (hPCy-MSCs) have showed very promising properties, including high plasticity toward bone, vascular and neural phenotypes. In this topical review, the authors described the main oral-derived stem cell populations, their most interesting characteristics and their ability towards osteogenic lineage. This review has also investigated the main clinical procedures, reported in the recent literature, involving oral derived-MSCs and biomaterials to get better bone regeneration in dental procedures. The numerous populations of mesenchymal stem cells isolated from oral tissues (DPSCs, SHEDs, PDLSCs, DFSCs, SCAPs, hPCy-MSCs) retain proliferation ability and multipotency; these features are exploited for clinical purposes, including regeneration of injured tissues and local immunomodulation; we reported on the last studies on the proper use of such MSCs within a biological niche and the proper way to storage them for future clinical use.


2011 ◽  
Vol 22 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Carlos Estrela ◽  
Ana Helena Gonçalves de Alencar ◽  
Gregory Thomas Kitten ◽  
Eneida Franco Vencio ◽  
Elisandra Gava

In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer’s disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.


2019 ◽  
Vol 14 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Nasim Kiaie ◽  
Rouhollah M. Aghdam ◽  
Seyed H. Ahmadi Tafti ◽  
Armita M. Gorabi

Angiogenesis has always been a concern in the field of tissue engineering. Poor vascularization of engineered constructs is a problem for the clinical success of these structures. Among the various methods employed to induce angiogenesis, stem cells provide a promising tool for the future. The present review aims to present the application of stem cells in the induction of angiogenesis. Additionally, it summarizes recent advancements in stem cell-mediated angiogenesis of different tissue engineering constructs.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


2004 ◽  
Vol 83 (7) ◽  
pp. 523-528 ◽  
Author(s):  
M.T. Duailibi ◽  
S.E. Duailibi ◽  
C.S. Young ◽  
J.D. Bartlett ◽  
J.P. Vacanti ◽  
...  

The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.


2021 ◽  
Vol 48 (5) ◽  
pp. 559-567
Author(s):  
Antonio Jorge Forte ◽  
Daniel Boczar ◽  
Rachel Sarabia-Estrada ◽  
Maria T. Huayllani ◽  
Francisco R. Avila ◽  
...  

The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study’s goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.


2020 ◽  
Author(s):  
Lucía Benítez ◽  
Lucas Barberis ◽  
Luciano Vellón ◽  
Carlos Alberto Condat

Abstract Background: Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals. Methods: A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations. Results: The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved. Conclusions: Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. A specific condition for the growth of the cancer stem cell number is also obtained.


RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85756-85766 ◽  
Author(s):  
E. Jäger ◽  
R. K. Donato ◽  
M. Perchacz ◽  
A. Jäger ◽  
F. Surman ◽  
...  

Poly(alkene succinates) are promising materials for specialized medical devices and tissue engineering, presenting intrinsic properties, such as; fungal biofilm inhibition, biocompatibility and stem cells controlled growth promotion.


Sign in / Sign up

Export Citation Format

Share Document