scholarly journals Insights into the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based Enhanced Oil Recovery Method to Rock Typing

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 972 ◽  
Author(s):  
Amin Rezaei ◽  
Hadi Abdollahi ◽  
Zeinab Derikvand ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Amir Mosavi ◽  
...  

As a fixed reservoir rock property, pore throat size distribution (PSD) is known to affect the distribution of reservoir fluid saturation strongly. This study aims to investigate the relations between the PSD and the oil–water relative permeabilities of reservoir rock with a focus on the efficiency of surfactant–nanofluid flooding as an enhanced oil recovery (EOR) technique. For this purpose, mercury injection capillary pressure (MICP) tests were conducted on two core plugs with similar rock types (in respect to their flow zone index (FZI) values), which were selected among more than 20 core plugs, to examine the effectiveness of a surfactant–nanoparticle EOR method for reducing the amount of oil left behind after secondary core flooding experiments. Thus, interfacial tension (IFT) and contact angle measurements were carried out to determine the optimum concentrations of an anionic surfactant and silica nanoparticles (NPs) for core flooding experiments. Results of relative permeability tests showed that the PSDs could significantly affect the endpoints of the relative permeability curves, and a large amount of unswept oil could be recovered by flooding a mixture of the alpha olefin sulfonate (AOS) surfactant + silica NPs as an EOR solution. Results of core flooding tests indicated that the injection of AOS + NPs solution in tertiary mode could increase the post-water flooding oil recovery by up to 2.5% and 8.6% for the carbonate core plugs with homogeneous and heterogeneous PSDs, respectively.

2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoyan Wang ◽  
Jie Zhang ◽  
Guangyu Yuan ◽  
Wei Wang ◽  
Yanbin Liang ◽  
...  

Surfactant polymer (SP) flooding has become an important enhanced oil recovery (EOR) technique for the high-water cut mature oilfield. Emulsification in the SP flooding process is regarded as a powerful mark for the successful application of SP flooding in the filed scale. People believe emulsification plays a positive role in EOR. This paper uses one-dimensional homogenous core flooding experiments and parallel core flooding experiments to examine the effect of emulsification on the oil recoveries in the SP flooding process. 0.3 pore volume (PV) of emulsions which are prepared using ultralow interface intension (IFT) SP solution and crude oil with stirring method was injected into core models to mimic the emulsification process in SP flooding, followed by 0.35 PV of SP flooding to flood emulsions and remaining oil. The other experiment was preformed 0.65 PV of SP flooding as a contrast. We found SP flooding can obviously enhance oil recovery factor by 25% after water flooding in both homogeneous and heterogeneous cores. Compared to SP flooding, emulsification can contribute an additional recovery factor of 3.8% in parallel core flooding experiments. But there is no difference on recoveries in homogenous core flooding experiments. It indicates that the role of emulsification during SP flooding will be more significant for oil recoveries in a heterogeneous reservoir rather than a homogeneous reservoir.


2013 ◽  
Vol 26 ◽  
pp. 111-116 ◽  
Author(s):  
Hasan Soleimani ◽  
Noorhana Yahya ◽  
Noor Rasyada Ahmad Latiff ◽  
Hasnah Mohd Zaid ◽  
Birol Demiral ◽  
...  

Research on the application of nanoparticles, specifically magnetic nanoparticles in enhanced oil recovery has been increasing in recent years due to their potential to increase the oil production despite having to interact with reservoirs of high salinity, high pressure and temperature and un-natural pH. Unlike other conventional EOR agents e.g. surfactants and polymers, a harsh environment will cause degradation and failure to operate. Magnetic nanoparticles which are activated by a magnetic field are anticipated to have the ability to travel far into the oil reservoir and assist in the displacement of the trapped oil. In this work, ferromagnetic Co2+xFe2+1-xFe3+2O4 nanoparticles were synthesized and characterized for their morphological, structural and magnetic properties. At a composition x = 0.75, this nanomaterial shows its best magnetisation parameters i.e. highest value of saturation magnetization, remanence and coercivity of 65.23 emu/g, 12.18 emu/g and 239.10 Oe, respectively. Subsequently, a dispersion of 0.01 wt% Co2+0.75Fe2+0.25Fe3+2O4 nanoparticles in distilled water was used for core flooding test to validate its feasibility in enhanced oil recovery. In a core flooding test, the effect of electromagnetic waves irradiation to activate the magnetization of Co2+0.75Fe2+0.25Fe3+2O4 nanofluid was also investigated by irradiating a 78 MHz square wave to the porous medium while nanofluid injection was taking place. In conclusion, an almost 20% increment in the recovery of oil was obtained with the application of electromagnetic waves in 2 pore volumes injection of a Co2+0.75Fe2+0.25Fe3+2O4 nanofluid.


2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.


2014 ◽  
Vol 1024 ◽  
pp. 56-59 ◽  
Author(s):  
Hasnah Mohd Zaid ◽  
Noor Rasyada Ahmad Latiff ◽  
Noorhana Yahya

Application of nanotechnology in enhanced oil recovery (EOR) has been increasing in the recent years. After secondary flooding, more than 60% of the original oil in place (OOIP) remains in the reservoir due to trapping of oil in the reservoir rock pores. One of the promising EOR methods is surfactant flooding, where substantial reduction in interfacial tension between oil and water could sufficiently displace oil from reservoir. The emulsion that is created between the two interfaces has a higher viscosity than its original components, providing more force to push the trapped oil. In this paper, the recovery mechanism of the enhanced oil recovery was determined by measuring oil-nanofluid interfacial tension and the viscosity of the nanofluid. Series of core flooding experiments were conducted using packed silica beads whichreplicate core rocks to evaluate the oil recovery efficiency of the nanofluid in comparison to that using an aqueous commercial surfactant, 0.3wt% sodium dodecyl sulfate (SDS). 117 % increase in the recovery of the residual oil in place (ROIP) was observed by the 2 pore volume (PV) injection of aluminium oxide nanofluid in comparison with 0.3wt% SDS. In comparison to the type of material, 5.12% more oil has been recovered by aluminium oxide compared to zinc oxide nanofluid in the presence of EM wave. The effect of the EM wave on the recoverywas also studied by and it was proven that electric field component of the EM waves has been stimulating the nanofluid to be more viscous by the increment of 54.2% in the oil recovery when aluminium oxide nanofluid was subjected to 50MHz EM waves irradiation.


2012 ◽  
Vol 30 (5) ◽  
pp. 689-705 ◽  
Author(s):  
Behbood Abedi ◽  
Mohammad Hossein Ghazanfari ◽  
Riyaz Kharrat

Water flooding is being widely used in the petroleum industry and has been considered as a simple inexpensive secondary recovery method. But in fractured formations, existence of fracture system in reservoir rock induces an adverse effect on oil recovery by water flooding. Polymer flooding has been successfully applied as an alternative enhanced oil recovery method in fractured formations. But, the role of fracture geometrical properties on macroscopic efficiency of polymer flooding is not yet well-understood, especially in fractured five-spot systems. In this work five-spot glass micromodel, because of micro-visibility, ease of multiple experimentations and also presence of the unexplored issues, was used to experimentally investigate the influence of fracture geometrical characteristics such as fracture orientation, fracture spacing, fracture overlap and etc on the macroscopic efficiency of polymer flooding. The tests were performed on the fractured models which are initially saturated with the crude oil at fixed flow rate conditions and in a horizontally mounting. The results revealed that the macroscopic efficiency of polymer flooding depends on fracture geometrical properties. Fracture orientation showed more imposing effect than other fracture geometrical properties, and fracture with 45 degree inclination to the mean flow direction, gives greatest oil recovery factor. Large spacing fractures give more recovery than small spacing ones and in case of overlapping, fractures with less overlapping help polymer to better propagate which could be related to their greater effective fracture length. This pre-called effect could be responsible to show how continuity and width to length ratio of fractures affect recovery factor, less fracture discontinuity as well as more length to width ratio of fracture give more swept zone. Also, increasing number of fractures decreases oil recovery factor. The results of this work can be helpful to better understanding the role of fracture geometrical properties on macroscopic efficiency of polymer flooding in five-spot fractured systems.


2017 ◽  
Vol 31 (12) ◽  
pp. 13133-13143 ◽  
Author(s):  
Tammy Amirian ◽  
Manouchehr Haghighi ◽  
Peyman Mostaghimi

Low salinity and carbonated water flooding have been investigated as possible techniques of improved/enhanced oil recovery. Carbonated water injection consists of dissolving carbon dioxide CO2 in water prior to injection and could be considered as a way to store greenhouse gas safely. Low salinity water flooding is a process of diluting high salinity injection water to a very low level of salinity. In this project, the effect of combining the two techniques in a sequential flooding was studied. The primary aim of this study is to optimize the oil recovery and evaluate CO2 storage during this process, employing low permeability carbonate cores and different sequential carbonated and non-carbonated brines flooding. Formation brine, seawater, low salinity carbonated and non-carbonated were used in this work. Core samples grouped as composite cores with similar over all reservoir permeability. Different sequences of brines were employed to determine the optimum system. The experiment's result showed that carbonated water performs better than the noncarbonated brines. A new technique for estimate CO2 retention based on the displacement efficiency of the carbonated water flooding system is presented. The interfacial tension, contact angle measurements results indicated that wettability is the dominant mechanism of the studied systems. A sequential composite core flooding consists of carbonated low salinity followed by low salinity and seawater injection (CLSW- LSW-SW) is the optimum flooding system among the studied systems. Technically, CLSW flooding displayed an excellent incremental displacement efficiency ∆DE of 21.4% and CSW exhibited the best CO2 retention per incremental ∆Np.


Sign in / Sign up

Export Citation Format

Share Document