scholarly journals Preparation of Monolayer Photonic Crystals from Ag Nanobulge-Deposited SiO2 Particles as Substrates for Reproducible SERS Assay of Trace Thiol Pesticide

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1205
Author(s):  
Changbo Zhang ◽  
Jiying Xu ◽  
Yi Chen

Surface-enhanced Raman scattering (SERS) greatly increases the detection sensitivity of Raman scattering. However, its real applications are often degraded due to the unrepeatable preparation of SERS substrates. Herein presented is a very facile and cost-effective method to reproducibly produce a novel type of SERS substrate, a monolayer photonic crystal (PC). With a building block of laboratory-prepared monodisperse SiO2 particles deposited with space-tunable silver nanobulges (SiO2@nAg), a PC substrate was first assembled at the air–water interface through needle tip flowing, then transferred onto a silicon slide by a pulling technique. The transferred monolayer PCs were characterized by SEM and AFM to have a hexagonal close-packed lattice. They could increase Raman scattering intensity by up to 2.2 × 107-fold, as tested with p-aminothiophenol. The relative standard deviations were all below 5% among different substrates or among different locations on the same substrate. The excellent reproducibility was ascribed to the highly ordered structure of PCs, while the very high sensitivity was attributed to the strong hotspot effect caused by the appropriately high density of nanobulges deposited on SiO2 particles and by a closed lattice. The PC substrates were validated to be applicable to the SERS assay of trace thiol pesticides. Thiram pesticide is an example determined in apple juice samples at a concentration 102-fold lower than the food safety standard of China. This method is extendable to the analysis of other Raman-active thiol chemicals in different samples, and the substrate preparation approach can be modified for the fabrication of more PC substrates from other metallic nanobulge-deposited particles rather than silica only.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 685 ◽  
Author(s):  
Zhen Yin ◽  
Huilin He ◽  
Zhenming Wang ◽  
Xiaoguo Fang ◽  
Chunxiang Xu ◽  
...  

Recently, photochemical synthesis has attracted wide interest on in situ preparing the surface-enhanced Raman scattering (SERS) substrate with excellent performance, especially in a compact space and microfluidic channel. Herein, a facile, green and cost-effective approach to in situ photochemically synthesize silver nanoaggregates is demonstrated for SERS applications. By adjusting the photo-irradiation conditions, the morphologies and sizes of the silver nanoaggregates can be deliberately tailored. The synthesized silver nanoaggregates-based substrates exhibit a highly sensitive and reproducible SERS activity with a low detection limit of 10−8 M for 4-Aminothiophenol detection and relative standard deviation of 12.3%, paving an efficient and promising route for in situ SERS-based rapid detection in the environmental monitoring and food quality control.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37323-37329 ◽  
Author(s):  
Li-Ping Wang ◽  
Shan-Chi Kuo ◽  
U-Ser Jeng ◽  
Ying-Huang Lai

When DMAB-functionalized Au-NPs@EPSS acts as the SERS substrate, the detection sensitivity of p-NTP molecules increases by ∼6 times compared with as-synthesized Au-NPs@EPSS.


2021 ◽  
Vol 40 (1) ◽  
pp. 75-92
Author(s):  
Fugang Xu ◽  
Mengren Xuan ◽  
Zixiang Ben ◽  
Wenjuan Shang ◽  
Guangran Ma

Abstract Surface enhanced Raman is a powerful analytical tool with high sensitivity and unique specificity and promising applications in various branches of analytical chemistry. Despite the fabrication of ingenious enhancement substrate used in laboratory research, the development of simple, flexible, and cost-effective substrate is also great important for promoting the application of SERS in practical analysis. Recently, paper and filter membrane as support to fabricate flexible SERS substrates received considerable attentions. Paper-based SERS substrate has been reviewed but no summary on filter-based SERS substrate is available. Compared with paper, filter membrane has unique advantage in robust mechanics, diverse component, and tunable pore size. These characteristics endow the filter-based substrates great advantages for practical SERS analysis including simple and low-cost substrate preparation, high efficiency in preconcentration, separation and detection procedure. Therefore, filter-based substrates have shown great promise in SERS analysis in environment monitoring, food safety with high sensitivity and efficiency. As more and more work has been emerged, it is necessary to summarize the state of such a research topic. Here, the research on filter involved SERS analysis in the past eight years is summarized. A short introduction was presented to understand the background, and then the brief history of filter-based substrate is introduced. After that, the preparation of filter-based substrate and the role of filter are summarized. Then, the application of filter involved SERS substrate in analysis is presented. Finally, the challenges and perspective on this topic is discussed.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Ting Lin ◽  
Ya-Li Song ◽  
Pu Kuang ◽  
Si Chen ◽  
Zhigang Mao ◽  
...  

Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.


2015 ◽  
Vol 1096 ◽  
pp. 481-485
Author(s):  
Xu Feng Yu ◽  
Xiu Lan Cheng ◽  
Peng Yu Lv

Surface enhanced Raman scattering (SERS) has been proved to be a highly sensitive method to detect organic molecules at very low concentrations. In recent years, many researchers have reported that 1-dimension semiconductor nanomaterials assembled noble metal nanoparticles can get a strong SERS effect. In this paper, we succeeded to synthesize TiO2 nanorod thin films on fluorine-doped tin oxide (FTO) glass with hydrothermal synthesis which were able to be used as SERS substrates. Gold nanoparticles were assembled to TiO2 nanorod thin films using the physical sputtering method and the citrate reduction method, respectively. The field emission scanning electron microscope (FESEM) images show that the later method could achieve the more desirable and uniform distribution of gold nanoparticles. Rhodamine 6G (R6G) was chosen as the probe molecule to study the SERS performance of our novel SERS substrates. Raman scattering measurement proved that the substrates were able to enhance Raman signals by several orders of magnitude and could be applied to biochemical detection. The whole fabrication process was facile and cost-effective, and the SERS activity and reproducibility of the substrates were pretty good.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Yen-Chen Lee ◽  
Chih-Wei Chiu

We synthesize a high-efficiency substrate for surface-enhanced Raman scattering (SERS) measurements, which is composed of gold nanoparticles (AuNPs) on two-dimensional silicate nanoplatelets acting as an inorganic stabilizer, via the in-situ reduction of hydrogen tetrachloroaurate (III) by sodium citrate in an aqueous solution. Silicate platelets of ~1-nm thickness and various sizes, viz. laponite (50 nm), sodium montmorillonite (Na+–MMT, 100 nm), and mica (500 nm), are used to stabilize the AuNPs (Au@silicate), which are formed with uniform diameters ranging between 25 and 30 nm as confirmed by transmission electron microscopy (TEM). In particular, the laponite SERS substrate can be used in biological, environmental, and food safety applications to measure small molecules such as DNA (adenine molecule), dye (Direct Blue), and herbicide (paraquat) as it shows high detection sensitivity with a detection limit of 10−9 M for adenine detection. These highly sensitive SERS substrates, with their three-dimensional hot-junctions formed with AuNPs and two-dimensional silicate nanoplatelets, allow the highly efficient detection of organic molecules. Therefore, these Au@silicate nanohybrid substrates have great potential in biosensor technology because of their environmentally-friendly and simple fabrication process, high efficiency, and the possibility of rapid detection.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1426 ◽  
Author(s):  
Karel Kouba ◽  
Jan Proška ◽  
Marek Procházka

Surface-enhanced Raman scattering (SERS) sensors are constructed from metallic plasmonic nanostructures providing high sensitivity and spectral reproducibility. In many cases, irradiation of the SERS substrate by the laser beam leads to an increase of the local temperature and consequently to thermal degradation of metallic nanostructure itself and/or adsorbed analyte. We report here a “bottom-up” technique to fabricate new thermally resistant gold “film over nanosphere” (FON) substrates for SERS. We elaborated the simple and straightforward method of preparation of homogeneously and closely packed monolayer of SiO2 nanoparticles (50 nm in diameter) and covered it by a thin (20 nm) layer of magnetron-sputtered gold. The spectral testing using biologically important molecules (methylene blue, cationic porphyrin, and fungicide 1-methyl-1H-benzimidazole-2-thiol) proved a sensitivity and reproducibility of our AuSiO2 substrates. The main advantage of such SERS-active substrates is high thermal stability and low intensity of background and signal of graphitic carbon.


NANO ◽  
2020 ◽  
Vol 15 (09) ◽  
pp. 2050122
Author(s):  
Chenyan Li ◽  
Chengxiang Yang ◽  
Weijun Li ◽  
Mingming Cheng ◽  
Yingkai Liu

Surface-enhanced Raman scattering (SERS) substrates with low cost, high sensitivity and good reproducibility are still challenging in practical application. Herein, we propose a facile method to prepare monolayer ZnS@Ag nanospheres (NSs) by sputtering Ag nanoparticles (NPs) on the surfaces of the monolayer ZnS NSs produced by self-assembly. The monolayer ZnS@Ag NSs have rough surface and nanoscale gaps, which can produce large SERS effect. The dye molecules, Rhodamine 6G (R6G) and Rhodamine B (RhB), were used as probe to evaluate the SERS performance on the monolayer ZnS@Ag NSs. It was found that the monolayer ZnS@Ag NSs showed the high SERS sensitivity in the detection of R6G and RhB, the limit of detection (LOD) down to 9.12×10−13 M and 8.55×10−11 M, respectively. The corresponding enhancement factors (EF) are 3.01×108 and 8.2×106, respectively. Furthermore, the ordered structure makes the monolayer ZnS@Ag NSs substrate with high signal reproducibility and stability, and the relative standard deviation (RSD) values are less than 15%. Therefore, the monolayer ZnS@Ag NSs is a candidate for detecting organic dyes in the environment.


RSC Advances ◽  
2015 ◽  
Vol 5 (25) ◽  
pp. 19229-19235 ◽  
Author(s):  
Liwei Liu ◽  
Mingliang Jin ◽  
Qingwei Zhou ◽  
Runze Zhan ◽  
Huanjun Chen ◽  
...  

Bottom-up growth of Ag/a-Si@Ag arrays on Si, which worked as a highly sensitive SERS substrate.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Bingfang Zou ◽  
Chunyu Niu ◽  
Ming Ma ◽  
Lu Zhao ◽  
Yongqiang Wang

AbstractThe fabrication of a uniform array film through assembly of colloidal building blocks is of practical interest for the integrated individual and collective functions. Here, a magnetic assembly route was put forward to organize monodisperse noble metal microspheres into a uniform array film for surface-enhanced Raman scattering (SERS) application, which demonstrated the integrated signal sensitivity of single noble metal microspheres and reproducibility of their assembled uniform array film. For this purpose, monodisperse multifunctional Fe3O4@SiO2@TiO2@Ag (FOSTA) colloidal microspheres as building blocks were successfully synthesized through a homemade ultrasonic-assisted reaction system. When used in SERS test, these multifunctional microspheres could firstly bind the analyte (R6G) from solution and then assembled into a uniform film under an external magnetic field, which exhibited high SERS detection sensitivity with good reproducibility. In addition, due to the TiO2 interlayer in FOSTA colloidal microspheres, the building blocks could be recycled and self cleaned through photocatalytic degradation of the adsorbed analyte for recycling SERS application.


Sign in / Sign up

Export Citation Format

Share Document