scholarly journals Ultrabroadband Absorption Enhancement via Hybridization of Localized and Propagating Surface Plasmons

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1625
Author(s):  
Tian Sang ◽  
Honglong Qi ◽  
Xun Wang ◽  
Xin Yin ◽  
Guoqing Li ◽  
...  

Broadband metamaterial absorbers (MAs) are critical for applications of photonic and optoelectronic devices. Despite long-standing efforts on broadband MAs, it has been challenging to achieve ultrabroadband absorption with high absorptivity and omnidirectional characteristics within a comparatively simple and low-cost architecture. Here we design, fabricate, and characterize a novel compact Cr-based MA to achieve ultrabroadband absorption in the visible to near-infrared wavelength region. The Cr-based MA consists of Cr nanorods and Cr substrate sandwiched by three pairs of SiO2/Cr stacks. Both simulated and experimental results show that an average absorption over 93.7% can be achieved in the range of 400–1000 nm. Specifically, the ultrabroadband features result from the co-excitations of localized surface plasmon (LSP) and propagating surface plasmon (PSP) and their synergistic absorption effects, where absorption in the shorter and longer wavelengths are mainly contributed bythe LSP and PSP modes, respectively. The Cr-based MA is very robust to variations of the geometrical parameters, and angle-and polarization-insensitive absorption can be operated well over a large range of anglesunder both transverse magnetic(TM)- and transverse electric (TE)-polarized light illumination.

2021 ◽  
Author(s):  
Chen Fang ◽  
Qing Chai ◽  
Ye Chen ◽  
Yan Xing ◽  
Zai-fa Zhou

Abstract Optical metamaterials are widely used in electromagnetic wave modulation due to their sub-wavelength feature sizes. In this paper, a method to plate an achiral nanopillar array with chiral coating by the secondary effect in focused ion beam induced deposition is proposed. Guided by the pattern defined in a bitmap with variable residence time, the beam scan strategy suppresses the interaction between adjacent nanostructures. A uniform chiral coating is formed on the target nanostructure without affecting the adjacent nanostructure, under carefully selected beam parameters and the rotation angle of the sample stage. Energy Dispersive X-Ray Spectroscopy results show that the chiral film has high purity metal, which enables the generation of localized surface plasmon resonances and causes the circular dichroism under circularly polarized light illumination. Finally, the tailorable circular dichroism spectrum of the coated array is verified by the Finite Difference Time Domain method.


2022 ◽  
Vol 15 (2) ◽  
pp. 027001
Author(s):  
Yang Cui ◽  
Taiki Takamatsu ◽  
Koichi Shimizu ◽  
Takeo Miyake

Abstract As for the diagnosis and treatment of eye diseases, an ideal fundus imaging system is expected to be portability, low cost, and high resolution. Here, we demonstrate a non-mydriatic near-infrared fundus imaging system with light illumination from an electronic contact lens (E-lens). The E-lens can illuminate the retinal and choroidal structures for capturing the fundus images when voltage is applied wirelessly to the lens. And we also reconstruct the images with a depth-dependent point-spread function to suppress the scattering effect that eventually visualizes the clear fundus images.


2014 ◽  
Vol 9 (1) ◽  
pp. 519 ◽  
Author(s):  
Peng Zhang ◽  
Shibin Li ◽  
Chunhua Liu ◽  
Xiongbang Wei ◽  
Zhiming Wu ◽  
...  

2014 ◽  
Vol 28 (17) ◽  
pp. 1450143 ◽  
Author(s):  
M. L. Wan ◽  
H. J. Du ◽  
Y. L. Song ◽  
F. Q. Zhou ◽  
K. J. Dai

The plasmonic properties of asymmetric Au / SiO 2/ Au sandwiched cross-shape nanobars are investigated theoretically using the discrete dipole approximation (DDA) method. Two localized surface plasmon resonances are observed in the extinction spectra, which perform extreme sensitivity to the length and width of the nanobar and can be tuned easily throughout visible and into near-infrared spectral regions. The local electric fields around the nanobar are calculated and a pure electromagnetic Raman enhancement factor of about 106 can be achieved. In addition, compared to a monolayer gold nanobar, it exhibits more "hot spots" and stronger localized electric field enhancements. This plasmonic substrate provides potential applications in surface enhanced Raman scattering (SERS) and nonlinear optical devices.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1265 ◽  
Author(s):  
Daler R. Dadadzhanov ◽  
Tigran A. Vartanyan ◽  
Alina Karabchevsky

Molecular overtones stretching modes that occupy the near-infrared (NIR) are weak compared to the fundamental vibrations. Here we report on the enhancement of absorption by molecular vibrations overtones via electromagnetic field enhancement of plasmonic nanoparallelepipeds comprising a square lattice. We explore numerically, using finite element method (FEM), gold metasurfaces on a transparent dielectric substrate covered by weakly absorbing analyte supporting N-H and C-H overtone absorption bands around 1.5 μ m and around 1.67 μ m, respectively. We found that the absorption enhancement in N-H overtone transition can be increased up to the factor of 22.5 due to the combination of localized surface plasmon resonance in prolonged nanoparticles and lattice Rayleigh anomaly. Our approach may be extended for sensitive identification of other functional group overtone transitions in the near-infrared spectral range.


Nanoscale ◽  
2019 ◽  
Vol 11 (30) ◽  
pp. 14237-14241 ◽  
Author(s):  
Lin Sun ◽  
Yang Shi ◽  
Mingcong Tang ◽  
Dong Wang ◽  
Yaping Tian ◽  
...  

The hierarchical urchin-like LaWO4Cl assemblies promote the photothermal conversion performance due to the localized surface plasmon resonance.


2009 ◽  
Vol 1173 ◽  
Author(s):  
Kazuma Tsuboi ◽  
Hidetoshi Matsumoto ◽  
Mie Minagawa ◽  
Akihiko Tanioka

AbstractIn this paper we report new excitation method of surface plasmon polariton (SPP) at air/gold interface with electrospun nanofibers. Nanofibers of polyvinylpirrolidone were electrospun onto the surface of a gold film. The observations by scanning electron microscopy and optical microscopy indicated that the average diameters of the nanofibers were about 300 nm and average sizes of pores were about 30-40 μm. Optical response of the nanofibers on gold surface was investigated by polarized reflection absorption spectroscopy (RAS). The RAS spectrum with p-polarized light showed two absorption bands while the spectrum with s-polarized light only one band. One is a band at about 520 nm that also found in the spectrum with s-polarized light. Another is a broad band in the near-infrared region which found only with p-polarized light. The peak intensity of the latter band increases with increase of incident angle of the polarized light and the peak wavelength of the band shifted to longer wavelength. These responses suggested that SPP at air/gold interface was excited with the scattering light from the electrospun nanofibers. We also found that the peak wavelength of the absorption band in near-infrared region changed with the increase of the amount of the nanofibers. This may be due to the fact that the sizes of the pores on gold surface became smaller than the propagation length of SPP, which resulted in scattering and interference of SPP.


2015 ◽  
Vol 1118 ◽  
pp. 125-128
Author(s):  
Wen Li Dou ◽  
Wen Xu ◽  
Shao Hui Xu ◽  
Guang Tao Fei ◽  
Yi Ming Xiao

We present a detailed study on near-infrared (NIR) reflection spectra of Cu nanowire arrays (NWAs) which are embedded in porous anodic alumina oxide templates and with pore diameters from 35 nm to 80 nm. We find that the NIR reflection of these samples is out of the frequency regime for surface-plasmon resonance induced by intra-and inter-band excitations. However, the intensity of the NIR reflection of Cu NWAs depends strongly on sample parameters and temperature. The measurements are carried out at temperatures setting to be 4 K, 77 K, 200 K, and at room temperature. The optical response of the Cu NWAs in NIR bandwidth is attributed to localized surface-plasmon oscillations and the NIR reflectance increases with temperature up to room-temperature. The physical mechanisms behind these interesting findings are discussed.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1087
Author(s):  
Caroline R. Basso ◽  
Taís F. Cruz ◽  
Bruna L. Silva ◽  
Valber A. Pedrosa ◽  
João P. Araújo Junior

The aim of the current study is to introduce a methodology aimed at producing a biosensor that uses gold nanoparticles (AuNPs) to detect porcine circovirus 2 (PCV-2). This biosensor was based on AuNPs, which were modified with self-assembled monolayers (SAMs) and antibodies. The AuNPs’ surface and virus modification process applied to enable antibody binding was accompanied by localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Virus quantification was possible by the light absorption difference in the spectrum at concentrations of 105, 106, 107, 108, and 109 DNA copies/mL PCV-2 in relation to quantitative PCR (qPCR), with an R2 value >0.98. The visualization of colorimetric changes in the different PCV-2 concentrations was possible without the use of equipment. The biosensor production methodology presented reproducibility and specificity, as well as easy synthesis and low cost. An enhanced version of it may be used in the future to replace traditional tests such as PCR.


Sign in / Sign up

Export Citation Format

Share Document