scholarly journals Electrochemical Impedance Spectroscopy Analysis of Hole Transporting Material Free Mesoporous and Planar Perovskite Solar Cells

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1635
Author(s):  
Sumayya M. Abdulrahim ◽  
Zubair Ahmad ◽  
Jolly Bahadra ◽  
Noora J. Al-Thani

The future photovoltaic technologies based on perovskite materials are aimed to build low tech, truly economical, easily fabricated, broadly deployable, and trustworthy solar cells. Hole transport material (HTM) free perovskite solar cells (PSCs) are among the most likely architectures which hold a distinctive design and provide a simple way to produce large-area and cost-effective manufacture of PSCs. Notably, in the monolithic scheme of the HTM-free PSCs, all layers can be printed using highly reproducible and morphology-controlled methods, and this design has successfully been demonstrated for industrial-scale fabrication. In this review article, we comprehensively describe the recent advancements in the different types of mesoporous (nanostructured) and planar HTM-free PSCs. In addition, the effect of various nanostructures and mesoporous layers on their performance is discussed using the electrochemical impedance spectroscopy (EIS) technique. We bring together the different perspectives that researchers have developed to interpret and analyze the EIS data of the HTM-free PSCs. Their analysis using the EIS tool, the limitations of these studies, and the future work directions to overcome these limitations to enhance the performance of HTM-free PSCs are comprehensively considered.

RSC Advances ◽  
2019 ◽  
Vol 9 (57) ◽  
pp. 33436-33445 ◽  
Author(s):  
Dino Klotz ◽  
Ganbaatar Tumen-Ulzii ◽  
Chuanjiang Qin ◽  
Toshinori Matsushima ◽  
Chihaya Adachi

Reversible changes in perovskite solar cells (PSC) are detected and analysed by electrochemical impedance spectroscopy (EIS).


2014 ◽  
Vol 925 ◽  
pp. 553-558 ◽  
Author(s):  
Azhar Fakharuddin ◽  
Irfan Ahmed ◽  
Qamar Wali ◽  
Zulkefli Khalidin ◽  
Mashitah M. Yusoff ◽  
...  

A number of nanocrystalline, mesoporous large area (~0.2- 2 cm2) dye-sensitized solar cells (DSSCs) are probed by electrochemical impedance spectroscopy measurements to realize their carrier dynamics such as charge transport resistance (RCT), electron diffusion coefficient (Dη), and electron lifetime (τn) by applying an equivalent electrical model. The experimental upshots reveal that the electron lifetime relates with the device physical parameters which was neglected in previous studies. It is also found that the RCT relates negatively with the device area i.e. it decrease upon increasing photo-exposed area. The observed lowering of current density (JSC) over a series of experiments upon increasing the photoelectrode area is attributed to the decrease in RCT. The charge carriers upon injection into semiconductor layer find increased diffusion pathways and eventually recombine with the hole species when characterized by lower carrier lifetime. The thickness of the electrode film does not play an effective role indicating that the dynamics of larger area DSSCs differs largely from those of a single cell. The experimental results available indicate that a nearly complete collection of charge carriers is possible in large area modules provided the physical dimensions of photoelectrode area are considered. The results from the study hints future directions to build high efficiency DSSC modules and further asserts considering the diffusion length in two-dimensions while fabricating larger area cells.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5794
Author(s):  
Sumayya M. Abdulrahim ◽  
Zubair Ahmad ◽  
Jolly Bhadra ◽  
Noora Jabor Al-Thani

Despite the remarkable progress in perovskite solar cells (PSCs), their instability and rapid degradation over time still restrict their commercialization. A 2D capping layer has been proved to overcome the stability issues; however, an in-depth understanding of the complex degradation processes over a prolonged time at PSC interfaces is crucial for improving their stability. In the current work, we investigated the stability of a triple cation 3D ([(FA0.83MA0.17)Cs0.05]Pb(I0.83Br0.17)3) and 2D/3D PSC fabricated by a layer-by-layer deposition technique (PEAI-based 2D layer over triple cation 3D perovskite) using a state-of-art characterization technique: electrochemical impedance spectroscopy (EIS). A long-term stability test over 24 months was performed on the 3D and 2D/3D PSCs with an initial PCE of 18.87% and 20.21%, respectively, to suggest a more practical scenario. The current-voltage (J-V) and EIS results showed degradation in both the solar cell types; however, a slower degradation rate was observed in 2D/3D PSCs. Finally, the quantitative analysis of the key EIS parameters affected by the degradation in 3D and 2D/3D PSCs were discussed.


2017 ◽  
Vol 5 (40) ◽  
pp. 21161-21168 ◽  
Author(s):  
Yongguang Tu ◽  
Jihuai Wu ◽  
Xin He ◽  
Panfeng Guo ◽  
Tongyue Wu ◽  
...  

Further efficiency enhancement mainly relies on decreasing the interface losses between the active layers in perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document