scholarly journals Properties of Cobalt- and Nickel-Doped Zif-8 Framework Materials and Their Application in Heavy-Metal Removal from Wastewater

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1636
Author(s):  
Bowen Shen ◽  
Bixuan Wang ◽  
Liying Zhu ◽  
Ling Jiang

Heterometallic zeolite imidazole framework materials (ZIF) exhibit highly attractive properties and have drawn increased attention. In this study, a petal-like zinc based ZIF-8 crystal and materials doped with cobalt and nickel ions were efficiently prepared in an aqueous solution at room temperature. It was observed that doped cobalt and nickel had obviously different effects on the morphology of ZIF-8. Cobalt ions were beneficial for the formation of ZIF-8, while addition of nickel ions tended to destroy the original configuration. Then we compared the absorption ability for metal ions between petal-like ZIF-8 and its doped derivatives with anion dichromate ions (Cr2O72−) and cation copper ions (Cu2+) as the absorbates. Results indicated that saturated adsorption capacities of Co@ZIF-8 and Ni@ZIF-8 for Cr2O72− reach 43.00 and 51.60 mg/g, while they are 1191.67 and 1066.67 mg/g for Cu2+, respectively, which are much higher than the original ZIF-8 materials. Furthermore, both the heterometallic ZIF-8 materials show fast adsorption kinetics to reach adsorption equilibrium. Therefore, petal-like ZIF-8 with doped ions can be produced through a facile method and can be an excellent candidate for further applications in heavy-metal treatment.

2020 ◽  
Vol 69 (9-10) ◽  
pp. 465-471
Author(s):  
Anita Bašić ◽  
Mario Nikola Mužek ◽  
Lea Kukoč-Modun ◽  
Sandra Svilović

The removal of copper and cobalt ions from binary metal solutions on zeolite NaX by ion exchange process was investigated. Experiments were conducted in unbaffled glass reactor with a Rushton turbine as a stirrer. The dependence of ion exchange kinetics and the amount exchanged were tested using different initial concentrations of metal ions in mixtures. The results obtained indicate that the removal efficiency depends on the initial heavy metal concentrations in binary solutions. Experimental kinetics data were analysed using Ritchie and Weber-Morris models. According to AARD values, the rate in this study was reaction-controlled.


2002 ◽  
Vol 57 (7-8) ◽  
pp. 629-633 ◽  
Author(s):  
Kolishka Tsekova ◽  
Galin Petrov

This study assesses the ability of mycelia of Rhizopus delemar (both free and immobilized on polyurethane foam) to remove heavy metals from single-ion solutions as well as from a mixture of them. All experiments were conducted using 0.5-5 mm solutions of CuSO4·5H2O, CoCl2·6H2O and FeSO4·7H2O. Mycelia immobilized on polyurethane foam cells showed some times increase in uptake compared with that of free cells. Metal ions accumulation from a mixed solution was decreased slightly for cobalt and iron and considerable for copper ions. Heavy metal uptake was examined in the immobilized column experiments and more than 92% heavy metal removal (mg heavy metals removed/mg heavy metals added) from a mixed solution was achieved during the 5 cycles. During these experiments, the dry weight of the immobilized cells was decreased by only 2%. These results showed that immobilized mycelia of Rhizopus delemar can be used repeatedly for removal of heavy metals from aqueous solutions.


2017 ◽  
Vol 890 ◽  
pp. 133-136
Author(s):  
Patcharin Racho ◽  
Pinitta Phalathip ◽  
Warutai Dejtanon

In this study was evaluated a performance of chemically modified synthesis fiber for the heavy metal treatment. Four fibers sampled from textile industry were evaluated in this study including of polyester, nylon, rayon and polyester/cotton. The graft copolymerization is the first step of modification process using acrylic acid with and without a surfactant. Then, amino chelating group was prepared via soaked in ethylenediamine solution. The grafting percentage was found in about 30-54% and 12-138% respectively without and with a surfactant conditions, respectively.Since, 3 M of acrylic acid 0.1 g of BPO neither, a polyester/cotton fibers nor 4 M acrylic acid. Overall results showed that the amino chelating fibers had higher lead and hexavalent chromium removal efficiencies than non modified fibers. These indicated the chemically modified fibers that functionalized with acrylic acid and ethylenediamine had capable to improve to an adsorption capacity. The modified nylon fibers had the highest adsorption capacity within 48 mg/g for Pb2+ and Cr6+.


1998 ◽  
Vol 38 (6) ◽  
pp. 269-277 ◽  
Author(s):  
I. Bakkaloglu ◽  
T.J. Butter ◽  
L.M. Evison ◽  
F.S. Holland ◽  
I.C. Hancock

The increasing awareness of accumulation of heavy metals in the environment has led to a quest for new and improved “clean” technologies. In this regard, an innovative heavy metal removal process composed of biosorption, sedimentation and electrolysis was developed. This study covers the comparison of various types of waste biomass including bacteria (S. rimosus), yeast (S. cerevisiae), fungi (P.chrysogenum) and activated sludge as well as marine algae (F.vesiculosus and A.nodosum), for their efficacy in the biosorption, sedimentation and desorption stages in the removal of zinc, copper and nickel ions. In the biosorption studies carried out with single metal solutions, A. nodosum, S.rimosus and F.vesiculosus proved to be the best biosorbents for zinc, copper and nickel ions respectively. In ternary metal solutions, the presence of other metal ions affected the biosorption efficiency. S.rimosus, however, exhibited high specificity for Cu and A.nodosum roughly retained its metal uptake for all of the metal ions. The sedimentation efficiencies were found to be proportional to the biosorption efficiencies. Desorptions were not effective, hence recycling did not yield good results. Overall, among the biomass tested, A.nodosum, S.rimosus, F.vesiculosus and P. chrysogenum were found to have the highest potential for use in the heavy metal removal process.


2021 ◽  
Vol 287 ◽  
pp. 112322
Author(s):  
Morteza Nazaripour ◽  
Mir Amir Mohammad Reshadi ◽  
Seyed Ahmad Mirbagheri ◽  
Mehdi Nazaripour ◽  
Alireza Bazargan

2021 ◽  
Vol 10 (1) ◽  
pp. 44-57
Author(s):  
Abdullah Al-Amin ◽  
Fahmida Parvin ◽  
Joydeep Chakraborty ◽  
Yong-Ick Kim

Sign in / Sign up

Export Citation Format

Share Document