scholarly journals Effect of TiO2 Nanotube Pore Diameter on Human Mesenchymal Stem Cells and Human Osteoblasts

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2117
Author(s):  
Juan Shong Khaw ◽  
Christopher R. Bowen ◽  
Sarah H. Cartmell

The pore diameter of uniformly structured nanotubes can significantly change the behaviour of cells. Recent studies demonstrated that the activation of integrins is affected not by only the surface chemistry between the cell-material interfaces, but also by the features of surface nanotopography, including nanotube diameter. While research has been carried out in this area, there has yet to be a single systemic study to date that succinctly compares the response of both human stem cells and osteoblasts to a range of TiO2 nanotube pore diameters using controlled experiments in a single laboratory. In this paper, we investigate the influence of surface nanotopography on cellular behaviour and osseointegrative properties through a systemic study involving human mesenchymal stem cells (hMSCs) and human osteoblasts (HOBs) on TiO2 nanotubes of 20 nm, 50 nm and 100 nm pore diameters using in-vitro assessments. This detailed study demonstrates the interrelationship between cellular behaviour and nanotopography, revealing that a 20 nm nanotube pore diameter is preferred by hMSCs for the induction of osteogenic differentiation, while 50 nm nanotubular structures are favourable by HOBs for osteoblastic maturation.

Injury ◽  
2006 ◽  
Vol 37 (3) ◽  
pp. S33-S42 ◽  
Author(s):  
Lucy DiSilvio ◽  
Jacqueline Jameson ◽  
Zakareya Gamie ◽  
Peter V. Giannoudis ◽  
Eleftherios Tsiridis

2005 ◽  
Vol 14 (4) ◽  
pp. 354-366 ◽  
Author(s):  
Roman M. Salasznyk ◽  
Aaron M. Westcott ◽  
Robert F. Klees ◽  
Donald F. Ward ◽  
Zhi Xiang ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward C. A. Gee ◽  
Renato Eleotério ◽  
Laura M. Bowker ◽  
Adnan Saithna ◽  
John A. Hunt

Abstract Background Porous tantalum is currently used in orthopaedic surgery for a variety of indications including soft tissue re-attachment. However, the clinical results have been variable and a previous laboratory study has suggested that tantalum may actually inhibit chick tendon fibroblasts. The influence of tantalum on human cell-types involved in soft tissue re-attachment has not been defined. Methods Human fibroblasts, human osteoblasts and human mesenchymal stem cells were plated on glass cover slips, half of which were coated with tantalum. Cell numbers were assessed at 1, 2, 7 and 14 days using Cyquant® assay. Cell adhesion and morphology were assessed using light microscopy at 7, 14 and 28 days. To reduce the effect of an expected rate of error, n = 4 was utilised for each cell type and the experiment was repeated twice. Results Statistically similar numbers of human osteoblasts and human mesenchymal stem cells were present at 14 days on tantalum-coated and uncoated glass cover slips, revealing no inhibitory effect on cell proliferation. More than double the number of human fibroblasts was seen on tantalum-coated cover slips at that time point (compared to controls), which was statistically significant (p < 0.0001). Morphological assessment revealed normal cell spreading and adhesion on both substrates at all time points. Conclusions In vitro study demonstrates that Tantalum causes a significant increase in the proliferation of human fibroblasts with no quantifiable negative effects seen on fibroblast behaviour after 28 days culture. Furthermore, tantalum does not exert any inhibitory effects on the proliferation or behaviour of human osteoblasts or human mesenchymal stem cells. Tantalum could be an appropriate biomaterial for use in situations where soft tissue requires direct reattachment to implants and may stimulate soft tissue healing.


2007 ◽  
Vol 13 (6) ◽  
pp. 1173-1183 ◽  
Author(s):  
Susanne Wolbank ◽  
Anja Peterbauer ◽  
Marc Fahrner ◽  
Simone Hennerbichler ◽  
Martijn van Griensven ◽  
...  

The Analyst ◽  
2015 ◽  
Vol 140 (4) ◽  
pp. 1265-1274 ◽  
Author(s):  
Heekyung Jung ◽  
Myung-Suk Chun ◽  
Mi-Sook Chang

This paper presents sorting of human stem cells by applying optimally designed microfluidic chips based on the hydrodynamic filtration principle.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 779
Author(s):  
Chiara Argentati ◽  
Francesco Morena ◽  
Chiara Fontana ◽  
Ilaria Tortorella ◽  
Carla Emiliani ◽  
...  

The biomedical translational applications of functionalized nanoparticles require comprehensive studies on their effect on human stem cells. Here, we have tested neat star-shaped mesoporous silica nanoparticles (s-MSN) and their chemically functionalized derivates; we examined nanoparticles (NPs) with similar dimensions but different surface chemistry, due to the amino groups grafted on silica nanoparticles (s-MSN-NH2), and gold nanoseeds chemically adsorbed on silica nanoparticles (s-MSN-Au). The different samples were dropped on glass coverslips to obtain a homogeneous deposition differing only for NPs’ chemical functionalization and suitable for long-term culture of human Bone Marrow–Mesenchymal stem cells (hBM-MSCs) and Adipose stem cells (hASCs). Our model allowed us to demonstrate that hBM-MSCs and hASCs have comparable growth curves, viability, and canonical Vinculin Focal adhesion spots on functionalized s-MSN-NH2 and s-MSN-Au as on neat s-MSN and control systems, but also to show morphological changes on all NP types compared to the control counterparts. The new shape was stem-cell-specific and was maintained on all types of NPs. Compared to the other NPs, s-MSN-Au exerted a small genotoxic effect on both stem cell types, which, however, did not affect the stem cell behavior, likely due to a peculiar stem cell metabolic restoration response.


2010 ◽  
Vol 30 (6) ◽  
pp. 455-455 ◽  
Author(s):  
Dongyan Shi ◽  
Dan Ma ◽  
Feiqing Dong ◽  
Chen Zong ◽  
Liyue Liu ◽  
...  

2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1320001-s-0032-1320001
Author(s):  
F. Mwale ◽  
H. T. Wang ◽  
L. Haglund ◽  
P. J. Roughley ◽  
J. Antoniou

2020 ◽  
Author(s):  
I Foessl ◽  
A Groselj-Strele ◽  
JC Piswanger-Sölkner ◽  
H Dobnig ◽  
A Fahrleitner-Pammer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document