scholarly journals State of the Art in PEG-Based Heat Transfer Fluids and Their Suspensions with Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Alina Adriana Minea

Research on nanoparticle enhanced fluids has increased rapidly over the last decade. Regardless of several unreliable reports, these new fluids have established performance in heat transfer. Lately, polyethylene glycol with nanoparticles has been demarcated as an innovative class of phase change materials with conceivable uses in the area of convective heat transfer. The amplified thermal conductivity of these nanoparticle enhanced phase change materials (PCMs) over the basic fluids (e.g., polyethylene glycol—PEG) is considered one of the driving factors for their improved performance in heat transfer. Most of the research, however, is centered on the thermal conductivity discussion and less on viscosity variation, while specific heat capacity seems to be fully ignored. This short review abridges most of the recent investigations on new PEG-based fluids and is dedicated especially to thermophysical properties of the chemicals, while a number of PEG-based nanofluids are compared in terms of base fluid and/or nanoparticle type and concentration. This review outlines the possibility of developing promising new heat transfer fluids. To conclude, this research is in its pioneering phase, and a large amount of experimental and numerical work is required in the coming years.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Johannes P. Kotzé ◽  
Theodor W. von Backström ◽  
Paul J. Erens

Cost and volume savings are some of the advantages offered by the use of latent heat thermal energy storage (TES). Metallic phase change materials (PCMs) have high thermal conductivity, which relate to high charging and discharging rates in TES system, and can operate at temperatures exceeding 560 °C. In the study, a eutectic aluminium–silicon alloy, AlSi12, is identified as a good potential PCM. AlSi12 has a melting temperature of 577 °C, which is above the working temperature of regular heat transfer fluids (HTFs). The eutectic sodium–potassium alloy (NaK) is identified as an ideal HTF in a storage system that uses metallic PCMs. A concept is presented that integrates the TES-unit and steam generator into one unit. As NaK is highly reactive with water, the inherently high thermal conductivity of AlSi12 is utilized in order to create a safe concept. As a proof of concept, a steam power-generating cycle was considered that is especially suited for a TES using AlSi12 as PCM. The plant was designed to deliver 100 MW with 15 h of storage. Thermodynamic and heat transfer analysis showed that the concept is viable. The analysis indicated that the cost of the AlSi12 storage material is 14.7 US$per kWh of thermal energy storage.


Author(s):  
Zenghu Han ◽  
Bao Yang ◽  
Yung Y. Liu

The colloidal dispersion of solid nanoparticles (1–100nm) has been shown experimentally to be an effective way to enhance the thermal conductivity of heat transfer fluids. Moreover, large particles (micrometers to tens of micrometers) of phase-change materials have long been used to make slurries with improved thermal storage capacity. Here, a hybrid concept that uses nanoparticles made of phase-change materials is proposed to simultaneously enhance the effective thermal conductivity and the effective heat capacity of fluids. Water-in-perfluorohexane nanoemulsion fluids and indium-in-polyalphaolefin nanofluids are examples of fluids that have been successfully synthesized for experimental studies of their thermophysical properties (i.e., thermal conductivity, viscosity, and heat capacity) as functions of particle loading and temperature. The thermal conductivity of perfluorohexane was found to increase by up to 52% for nanoemulsion fluids containing 12 vol. % water nanodroplets with a hydrodynamic radius of ∼10 nm. Also observed in water-in-perfluorohexane nanoemulsion fluids was a remarkable improvement in effective heat capacity, about 126% for 12 vol. % water loading, due to the melting-freezing transitions of water nanodroplets to ice nanoparticles and vice versa. The increases in the thermal conductivity and dynamic viscosity of these nanoemulsion fluids were found to be highly nonlinear against water loading, indicating the important roles of the hydrodynamic interaction and the aggregation of nanodroplets. For indium-in-polyalphaolefin nanofluids, the thermal conductivity enhancement increases slightly with increasing temperature (i.e., about 10.7% at 30°C to 12.9% at 90°C) with a nanoparticle loading of 8 vol. %. The effective volumetric heat capacity can be increased by about 20% for the nanofluids containing 8 vol. % indium nanoparticles with an average diameter of 20 nm. Such types of phase-change nanoemulsions and nanofluids possess long-term stability and can be mass produced without using as-prepared nanoparticles. The observed melting-freezing phase transitions of nanoparticles of phase-change materials (i.e., water nanodroplets and indium nanoparticles) considerably augmented the effective heat capacity of the base fluids. The use of phase-change nanoparticles would thus provide a way to substantially enhance the thermal transport properties of conventional heat transfer fluids. Future development of these phase-change nanofluids is expected to open new opportunities for studies of thermal fluids.


Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
S. Arunachalam

Energy storage helps in waste management, environmental protection, saving of fossil fuels, cost effectiveness, and sustainable growth. Phase change material (PCM) is a substance which undergoes simultaneous melting and solidification at certain temperature and pressure and can thereby absorb and release thermal energy. Phase change materials are also called thermal batteries which have the ability to store large amount of heat at fixed temperature. Effective integration of the latent heat thermal energy storage system with solar thermal collectors depends on heat storage materials and heat exchangers. The practical limitation of the latent heat thermal energy system for successful implementation in various applications is mainly from its low thermal conductivity. Low thermal conductivity leads to low heat transfer coefficient, and thereby, the phase change process is prolonged which signifies the requirement of heat transfer enhancement techniques. Typically, for salt hydrates and organic PCMs, the thermal conductivity range varies between 0.4–0.7 W/m K and 0.15–0.3 W/m K which increases the thermal resistance within phase change materials during operation, seriously affecting efficiency and thermal response. This paper reviews the different geometry of commercial heat exchangers that can be used to address the problem of low thermal conductivity, like use of fins, additives with high thermal conductivity materials like metal strips, microencapsulated PCM, composite PCM, porous metals, porous metal foam matrix, carbon nanofibers and nanotubes, etc. Finally, different solar thermal applications and potential PCMs for low-temperature thermal energy storage were also discussed.


Author(s):  
David Gonzalez-Nino ◽  
Lauren M. Boteler ◽  
Dimeji Ibitayo ◽  
Nicholas R. Jankowski ◽  
Pedro O. Quintero

A simple and easy to implement 1-D heat transfer modeling approach is presented in order to investigate the performance of various phase change materials (PCMs) under fast transient thermal loads. Three metallic (gallium, indium, and Bi/Pb/Sn/In alloy) and two organic (erythritol and n-octadecane) PCMs were used for comparison. A finite-difference method was used to model the transient heat transfer through the system while a heat integration or post-iterative method was used to model the phase change. To improve accuracy, the material properties were adjusted at each iteration depending on the state of matter of the PCM. The model assumed that the PCM was in direct contact with the heat source, located on the top of the chip, without the presence of a thermal conductivity enhancement. Results show that the three metallic PCMs outperform organic PCMs during fast transient pulses in spite of the fact that two of the metallic PCMs (i.e. indium and Bi/Pb/Sn/In) have considerably lower volumetric heats of fusion than erythritol. This is due to the significantly higher thermal conductivity values of metals which allow faster absorption of the heat energy by the PCM, a critical need in high-energy short pulses. The most outstanding case studied in this paper, Bi/Pb/Sn/In having only 52% of erythritol’s heat of fusion, showed a maximum temperature 20°C lower than erythritol during a 32 J and 0.02 second pulse. This study has shown thermal buffering benefits by using a metallic PCM directly in contact with the heat source during short transient heat loads.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2151-2169 ◽  
Author(s):  
Syeda Tariq ◽  
Hafiz Ali ◽  
Muhammad Akram

Phase change materials (PCM) with their high latent heat capacity have a great ability to store energy during their phase change process. The PCM are renowned for their applications in solar and thermal energy storage systems for the purpose of heating and cooling. However, one of the major drawbacks of PCM is their low thermal conductivity due to which their charging and discharging time reduces along with the reduction in energy storage capacity. This reduction in the energy storage capacity of PCM can be improved by producing organic-inorganic hybrid form-stable PCM, with the combination of two or more PCM together to increase their energy storage capacity. Nanoparticles that possess high thermal conductivity are also doped with these hybrid PCM (HPCM)to improve the effectiveness of thermal conductivity. This paper presents a short review on the applications of HPCM in energy storage and building application. Apart from this a short section of applications of composite PCM (CPCM) is also reviewed with discussions made at the end of each section. Results from the past literature depicted that the application of these HPCM and CPCM enhanced the energy storage capacity and thermal conductivity of the base PCM and selection of a proper hybrid material plays an essential role in their stability. It is presumed that this study will provide a sagacity, to the readers, to investigate their thermophysical properties and other essential applications.


2013 ◽  
Vol 860-863 ◽  
pp. 862-866 ◽  
Author(s):  
Yi Fei Zheng ◽  
Zhong Zhu Qiu ◽  
Jie Chen

Phase change materials in the form of emulsion (PCE) is a category of novel phase change fluid used as heat storage and transfer media. It plays an important role in commercially viable applications (energy storage, particularly).The emulsion is made of microparticles of a phase change wax (a kind of paraffin or mixture ) as a phase change material (PCM), mixed paraffin directly with water. This paper presents information on the different PCM emulsions by different researchers. It gives the method of preparation of the PCE, and makes a special effort to investigate the heat transfer phenomena and the method of enhancing the thermal conductivity of the emulsion.


Author(s):  
Yannan Liang ◽  
Jiemin Zhou ◽  
Ying Yang ◽  
Ye Wu ◽  
Yanyan He

The use of phase-change materials for latent heat storage is a new type of environmentally-friendly energy-saving technologies. Molten salts, one kind of phase-change materials, which have high latent heats, and whose phase transition temperatures match the high temperatures of heat engines, are the most widely used high-temperature phase-change heat storage materials. However, the heat transfer at solid/liquid phase interface belongs to Micro/Nanoscale Heat transfer, lots of the thermal properties of molten salt at melting point is difficult to test. In this investigation, based on the theory that the thermal conductivity can be determined by measuring the speed of the propagation of the solid/liquid phase interface during phase change, a set of system is developed to investigate the thermal conductivity of molten salts at liquid/solid phase transformation point. Meanwhile, mathematical calculation is applied to intuitively simulate the melting and solidifying process in the phase change chamber, by which the error could be analyzed and partly corrected and the result precision could also be increased. And a series of verification experiments have been performed to estimate the precision and the applicability of the measuring system to evaluate the feasibility of the method and measuring system. This research will pave the way to the follow-on research on heat storage at high temperature in industry.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Li-Wu Fan ◽  
Zi-Qin Zhu ◽  
Min-Jie Liu ◽  
Can-Ling Xu ◽  
Yi Zeng ◽  
...  

The classical problem of constrained melting heat transfer of a phase change material (PCM) inside a spherical capsule was revisited experimentally in the presence of nanoscale thermal conductivity fillers. The model nano-enhanced PCM (NePCM) samples were prepared by dispersing self-synthesized graphite nanosheets (GNSs) into 1-dodecanol at various loadings up to 1% by mass. The melting experiments were carried out using an indirect method by measuring the instantaneous volume expansion upon melting. The data analysis was performed based on the homogeneous, single-component assumption for NePCM with modified thermophysical properties. It was shown that the introduction of nanofillers increases the effective thermal conductivity of NePCM, in accompaniment with an undesirable rise in viscosity. The dramatic viscosity growth, up to over 100-fold at the highest loading, deteriorates significantly the intensity of natural convection, which was identified as the dominant mode of heat transfer during constrained melting. The loss in natural convection was found to overweigh the decent enhancement in heat conduction, thus resulting in decelerated melting in the presence of nanofillers. Except for the case with the lowest heating boundary temperature, a monotonous slowing trend of melting was observed with increasing the loading.


Sign in / Sign up

Export Citation Format

Share Document