scholarly journals The Formation and Decay of an Unstable State of a Suspension of Hydrophobic Nanoporous Particles under Rapid Compression

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Vladimir Borman ◽  
Anton Belogorlov ◽  
Vladimir Tronin

The study of non-wetting liquid transport in a nanoporous medium is stimulated by the possible use of this process to absorb or accumulate mechanical energy. The filling of nanopores of suspended particles with a non-wetting liquid under decay of the unstable state, when the pressure increase rate is much higher than the rate of volume change, is studied. Based on the new experimental data and a theoretical model of the interacting modes of the spontaneous filling and filling under rapid compression, a picture of the percolation transition and a mechanism of liquid transport under such conditions are proposed. It is shown that a new dynamic filling threshold P0 is reached. It is shown that the filling of the porous medium is the result of the slow mode of impact compression when the fast mode of spontaneous filling is continuously adjusted to the slow mode on a small time scale. The theoretical model of the interacting modes is based on the solving of a system of kinetic equations for the distribution functions f(n,t) and F(n,t) clusters of filled pores under rapid compression, respectively. It is shown that filling at P=const corresponds to the non-dissipative transport of liquid on a time scale smaller than the characteristic filling time. The proposed model quantitatively describes the experimental data. So, the response of suspension to impact is characterized by the positive feedback.

1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


Author(s):  
Claudio Braccesi ◽  
Filippo Cianetti ◽  
Renzo Scaletta

The present paper illustrates an evaluation method developed by the authors to quantify the index of motion sickness incidence (MSI) in railways motion conditions. This index is formerly defined in literature to quantify diseases coming from low frequency motions (kinetosis). The proposed method, suggested as alternative to the only one existing in reference norm, involves PCT index, well known in railways context, and weighting curves for accelerometric signals, which are also specified in railways regulations. The approach of the method, consistent with the theoretical model, developed by the authors themselves in previous works, allows to obtain MSI index versus time and/or track progressive distance. The model is validated through comparison with experimental data available in literature and with measures recorded and obtained on regular trains during tests performed in Slovenia (EU).


2018 ◽  
Vol 198 ◽  
pp. 393-411 ◽  
Author(s):  
Nicolas Bourgeois ◽  
Hervé Jeanmart ◽  
Grégoire Winckelmans ◽  
Olivier Lamberts ◽  
Francesco Contino

2021 ◽  
Vol 95 (10) ◽  
pp. 2059-2064
Author(s):  
M. A. Orekhov

Abstract Molecular dynamic models are created for properties of bivalent ions in organic solvents. It is shown that molecules of the considered solvents bound to ions via oxygen atoms. A theoretical model is developed that describes the ion coordination number. The coordination number in this model is determined by the ratio between the sizes of the ion and the atom organic molecule bound to it. It is shown that the coordination number depends weakly on the solvent and strongly on the type of ion. A value of 0.13 nm is obtained for the effective size of an oxygen atom bound to a bivalent ion. The constructed theoretical model agrees with the results from molecular dynamic calculations and the available experimental data.


1987 ◽  
Vol 109 (2) ◽  
pp. 427-433 ◽  
Author(s):  
B. W. Webb ◽  
R. Viskanta

Experiments have been performed to study the rate of internal radiative heating on the natural convective motion in a vertical rectangular enclosure irradiated from the side. A Mach–Zehnder interferometer has been used to determine the temperature field, and a fluorescing dye injection technique was employed to illustrate the flow structure with water as the working fluid. A theoretical model is developed for predicting the absorption of thermal radiation and the subsequent buoyancy-driven flow. Predictions based on spectral calculations for the radiation flux divergence agree well with the experimental data.


2007 ◽  
Vol 22 (02n03) ◽  
pp. 645-648
Author(s):  
L. LEŚNIAK ◽  
R. KAMIŃSKI ◽  
B. EL-BENNICH ◽  
B. LOISEAU ◽  
A. FURMAN

Analysis of charged and neutral B meson decays into π+π-K, K+K-K and [Formula: see text] is performed using a unitary representation of the ππ and [Formula: see text] final state interactions. Comparison of the theoretical model with the experimental data of the Belle and BaBar Collaborations indicates that charming penguin contributions are necessary to describe the B → f0(980) K and B → ρ(770)0 K decays.


2006 ◽  
Vol 13 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Y. I. Troitskaya ◽  
O. A. Druzhinin ◽  
D. A. Sergeev ◽  
V. V. Papko ◽  
G. N. Balandina

Abstract. The objective of the present paper is to develop a theoretical model describing the evolution of a turbulent wake behind a towed sphere in a stably stratified fluid at large Froude and Reynolds numbers. The wake flow is considered as a quasi two-dimensional (2-D) turbulent jet flow whose dynamics is governed by the momentum transfer from the mean flow to a quasi-2-D sinuous mode growing due to hydrodynamic instability. The model employs a quasi-linear approximation to describe this momentum transfer. The model scaling coefficients are defined with the use of available experimental data, and the performance of the model is verified by comparison with the results of a direct numerical simulation of a 2-D turbulent jet flow. The model prediction for the temporal development of the wake axis mean velocity is found to be in good agreement with the experimental data obtained by Spedding (1997).


2007 ◽  
pp. 222-252
Author(s):  
C. Notarnicola

This chapter introduces the use of Bayesian methodology for inversion purposes: the extraction of bio-geophysical parameters from remotely sensed data. Multisources information, such as different polarizations, frequencies, and sensors are fundamental to the development of operationally useful inversion systems. In this context, Bayesian methodologies offer a convenient tool of combining two or more disparate sources of information, models, and data. The chapter describes the development of a general model starting from a theoretical model, including the sensor noise and the model errors, by using a Bayesian approach. Furthermore, the developed procedure is applied to some experimental data sets. The author hopes that considering theoretical models and experimental data in many different configurations can give an idea of the versatility and robustness of the Bayesian framework.


2001 ◽  
Vol 280 (6) ◽  
pp. H2752-H2760 ◽  
Author(s):  
P. Fridez ◽  
A. Rachev ◽  
J.-J. Meister ◽  
K. Hayashi ◽  
N. Stergiopulos

Recent experimental studies have shown significant alterations of the vascular smooth muscle (VSM) tone when an artery is subjected to an elevation in pressure. Therefore, the VSM participates in the adaptation process not only by means of its synthetic activity (fibronectins and collagen) or proliferative activity (hypertrophy and hyperplasia) but also by adjusting its contractile properties and its tone level. In previous theoretical models describing the time evolution of the arterial wall adaptation in response to induced hypertension, the contribution of VSM tone has been neglected. In this study, we propose a new biomechanical model for the wall adaptation to induced hypertension, including changes in VSM tone. On the basis of Hill's model, total circumferential stress is separated into its passive and active components, the active part being the stress developed by the VSM. Adaptation rate equations describe the geometrical adaptation (wall thickening) and the adaptation of active stress (VSM tone). The evolution curves that are derived from the theoretical model fit well the experimental data describing the adaptation of the rat common carotid subjected to a step increase in pressure. This leads to the identification of the model parameters and time constants by characterizing the rapidity of the adaptation processes. The agreement between the results of this simple theoretical model and the experimental data suggests that the theoretical approach used here may appropriately account for the biomechanics underlying the arterial wall adaptation.


Sign in / Sign up

Export Citation Format

Share Document