scholarly journals Gold Nanostars Bioconjugation for Selective Targeting and SERS Detection of Biofluids

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 665
Author(s):  
Caterina Dallari ◽  
Claudia Capitini ◽  
Martino Calamai ◽  
Andrea Trabocchi ◽  
Francesco Saverio Pavone ◽  
...  

Gold nanoparticles (AuNPs) show physicochemical and optical functionalities that are of great interest for spectroscopy-based detection techniques, and especially for surface enhanced Raman spectroscopy (SERS), which is capable of providing detailed information on the molecular content of analysed samples. Moreover, the introduction of different moieties combines the interesting plasmonic properties of the AuNPs with the specific and selective recognition capabilities of the antibodies (Ab) towards antigens. The conjugation of biomolecules to gold nanoparticles (AuNPs) has received considerable attention for analysis of liquid samples and in particular biological fluids (biofluids) in clinical diagnostic and therapeutic field. To date, gold nanostars (AuNSts) are gaining more and more attention as optimal enhancers for SERS signals due to the presence of sharp branches protruding from the core, providing a huge number of “hot spots”. To this end, we focused our attention on the design, optimization, and deep characterization of a bottom up-process for (i) AuNPs increasing stabilization in high ionic strength buffer, (ii) covalent conjugation with antibodies, while (iii) retaining the biofunctionality to specific tag analyte within the biofluids. In this work, a SERS-based substrate was developed for the recognition of a short fragment (HA) of the hemagglutinin protein, which is the major viral antigen inducing a neutralizing antibody response. The activity and specific targeting with high selectivity of the Ab-AuNPs was successfully tested in transfected neuroblastoma cells cultures. Then, SERS capabilities were assessed measuring Raman spectra of HA solution, thus opening interesting perspective for the development of novel versatile highly sensitive biofluids sensors.

2019 ◽  
Vol 20 (24) ◽  
pp. 6306
Author(s):  
Aleksandra M. Bondžić ◽  
Andreja R. Leskovac ◽  
Sandra Ž. Petrović ◽  
Dragana D. Vasić Anićijević ◽  
Marco Luce ◽  
...  

Citrate-capped gold nanoparticles (AuNPs) were functionalized with three distinct antitumor gold(III) complexes, e.g., [Au(N,N)(OH)2][PF6], where (N,N)=2,2′-bipyridine; [Au(C,N)(AcO)2], where (C,N)=deprotonated 6-(1,1-dimethylbenzyl)-pyridine; [Au(C,N,N)(OH)][PF6], where (C,N,N)=deprotonated 6-(1,1-dimethylbenzyl)-2,2′-bipyridine, to assess the chance of tracking their subcellular distribution by atomic force microscopy (AFM), and surface enhanced Raman spectroscopy (SERS) techniques. An extensive physicochemical characterization of the formed conjugates was, thus, carried out by applying a variety of methods (density functional theory—DFT, UV/Vis spectrophotometry, AFM, Raman spectroscopy, and SERS). The resulting gold(III) complexes/AuNPs conjugates turned out to be pretty stable. Interestingly, they exhibited a dramatically increased resonance intensity in the Raman spectra induced by AuNPs. For testing the use of the functionalized AuNPs for biosensing, their distribution in the nuclear, cytosolic, and membrane cell fractions obtained from human lymphocytes was investigated by AFM and SERS. The conjugates were detected in the membrane and nuclear cell fractions but not in the cytosol. The AFM method confirmed that conjugates induced changes in the morphology and nanostructure of the membrane and nuclear fractions. The obtained results point out that the conjugates formed between AuNPs and gold(III) complexes may be used as a tool for tracking metallodrug distribution in the different cell fractions.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 145 ◽  
Author(s):  
Luisa Mandrile ◽  
Andrea Giovannozzi ◽  
Alessio Sacco ◽  
Gianmario Martra ◽  
Andrea Rossi

Flexible and transparent substrates are emerging as low cost and easy-to-operate support for surface-enhanced Raman spectroscopy (SERS). In particular, in situ SERS detection approach for surface characterization in transmission modality can be efficiently employed for non-invasive analysis of non-planar surfaces. Here we propose a new methodology to fabricate a homogenous, transparent, and flexible SERS membrane by the assistance of a thin TiO2 porous layer deposited on the PDMS surface, which supports the uniform loading of gold nanoparticles over large area. The substrate was first characterized for homogeneity, sensitivity and repeatability using a model molecule for SERS, i.e., 7-mercapto-4-methylcoumarin. Satisfactory intra-substrate uniformity and inter-substrates repeatability was achieved, showing an RSD of 10%, and an analytical sensitivity down to 10 nM was determined with an EF of 3.4 × 105 ± 0.4 × 105. Furthermore, SERS detection of pyrimethanil (PMT), a commonly employed pesticide in crops for human consumption, was performed in situ, exploiting the optical transparency of the device, using both model surfaces and non-flat bio-samples. PMT contamination at the phytochemical concentration levels corresponding to commonly used infield doses was successfully detected on the surface of the yellow Ficus benjiamina leaves, supporting the use of this substrate for food safety in-field application.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


Sign in / Sign up

Export Citation Format

Share Document