scholarly journals Electrografting of 4-Nitrobenzenediazonium Salts on Al-7075 Alloy Surfaces—The Role of Intermetallic Particles

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 894
Author(s):  
Jiangling Su ◽  
Juan Carlos Calderón Gómez ◽  
Guido Grundmeier ◽  
Alejandro González Orive

In this work, the electrografting of Al-7075 aluminium alloy substrates with 4-nitrobenzenediazonium salt (4-NBD) films was studied on a complex aluminium alloy surface. Prior to the electrografting reaction, the substrates were submitted to different surface treatments to modify the native aluminium oxide layer and unveil intermetallic particles (IMPs). The formation of the 4-NBD films could be correlated with the passive film state and the distribution of IMPs. The corresponding electrografting reaction was performed by cyclic voltammetry which allowed the simultaneous analysis of the redox reaction by a number of complementary surface-analytical techniques. Spatially resolved thin film analysis was performed by means of SEM-EDX, AFM, PM-IRRAS, Raman spectroscopy, XPS, and SKPFM. The collected data show that the 4-NBD film is preferentially formed either on the Al oxide layer or the IMP surface depending on the applied potential range. Potentials between −0.1 and −1.0 VAg/AgCl mostly generated nitrophenylene films on the oxide covered aluminium, while grafting between −0.1 and −0.4 VAg/AgCl favours the growth of these films on IMPs.

Author(s):  
G. Remond ◽  
R.H. Packwood ◽  
C. Gilles ◽  
S. Chryssoulis

Merits and limitations of layered and ion implanted specimens as possible reference materials to calibrate spatially resolved analytical techniques are discussed and illustrated for the case of gold analysis in minerals by means of x-ray spectrometry with the EPMA. To overcome the random heterogeneities of minerals, thin film deposition and ion implantation may offer an original approach to the manufacture of controlled concentration/ distribution reference materials for quantification of trace elements with the same matrix as the unknown.In order to evaluate the accuracy of data obtained by EPMA we have compared measured and calculated x-ray intensities for homogeneous and heterogeneous specimens. Au Lα and Au Mα x-ray intensities were recorded at various electron beam energies, and hence at various sampling depths, for gold coated and gold implanted specimens. X-ray intensity calculations are based on the use of analytical expressions for both the depth ionization Φ (ρz) and the depth concentration C (ρz) distributions respectively.


2021 ◽  
Vol 22 (6) ◽  
pp. 3220
Author(s):  
Álvaro Fernández-Ochoa ◽  
Francisco Javier Leyva-Jiménez ◽  
María De la Luz Cádiz-Gurrea ◽  
Sandra Pimentel-Moral ◽  
Antonio Segura-Carretero

The approaches based on high-resolution analytical techniques, such as nuclear magnetic resonance or mass spectrometry coupled to chromatographic techniques, have a determining role in several of the stages necessary for the development of functional foods. The analyses of botanical extracts rich in bioactive compounds is one of the fundamental steps in order to identify and quantify their phytochemical composition. However, the compounds characterized in the extracts are not always responsible for the bioactive properties because they generally undergo metabolic reactions before reaching the therapeutic targets. For this reason, analytical techniques are also applied to analyze biological samples to know the bioavailability, pharmacokinetics and/or metabolism of the compounds ingested by animal or human models in nutritional intervention studies. In addition, these studies have also been applied to determine changes of endogenous metabolites caused by prolonged intake of compounds with bioactive potential. This review aims to describe the main types and modes of application of high-resolution analytical techniques in all these steps for functional food development.


Author(s):  
Hendrik Linz ◽  
Henrik Beuther ◽  
Maryvonne Gerin ◽  
Javier R. Goicoechea ◽  
Frank Helmich ◽  
...  

AbstractThe far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 525
Author(s):  
Valentina Lodde ◽  
Piero Morandini ◽  
Alex Costa ◽  
Irene Murgia ◽  
Ignacio Ezquer

This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.


2011 ◽  
Vol 32 (3) ◽  
pp. 1298-1305 ◽  
Author(s):  
P. Das ◽  
R. Jayaganthan ◽  
I.V. Singh
Keyword(s):  
Al 7075 ◽  

2015 ◽  
Vol 161 ◽  
pp. 201-210 ◽  
Author(s):  
Y. Ma ◽  
X. Zhou ◽  
W. Huang ◽  
G.E. Thompson ◽  
X. Zhang ◽  
...  

2021 ◽  
Author(s):  
Olivier Bernard ◽  
Weiran Li ◽  
Fidel Costa ◽  
Caroline Bouvet de Maisonneuve

<p>One of the major challenges faced by volcanologists to investigate controls on eruption dynamics is to quantify both pre-eruptive volatile budgets and timescales of magma ascent. Indeed, petrological investigations of the two parameters usually rely on different methods/analytical techniques that are not always applicable/accessible. Recent studies have shown that the abundance and zoning pattern of F, Cl, and OH in apatite can be used to determine both pre-eruptive volatile budget and magma degassing rates that can, under some conditions, be related to magma ascent rates ([1],[2]).</p><p>Here we apply the two methods to apatite in the Rabaul 2006 eruption deposits (Papua-New-Guinea). This was a VEI-4 eruption and occurred in three main phases: (1) a sub-plinian onset followed 12h after its start by (2) a mixed strombolian-effusive phase, which subsequently evolved into (3) discrete vulcanian explosions. We sampled deposits of the three phases: (1) pumices, (2) fragments of lava flow, and (3) fragments of cow-pad bombs.</p><p>We calculated pre-eruptive water contents using apatite included in clinopyroxene as they keep a better record of reservoir conditions from the time of entrapment. We found that the magma that fed the sub-plinian phase contained the highest water content of about 2 wt.%, while magmas that fed the lava flow and the vulcanian phase were drier, with 0.2 to 0.5 wt.% less H<sub>2</sub>O. X-ray maps acquired with an EPMA show that only apatite crystals in the groundmass of the vulcanian and effusive deposits are zoned in F and Cl at the crystal rims, whereas those from the sub-plinian deposits and included in clinopyroxenes are not zoned. This indicates that the zoning is related to syn- or immediately pre-eruptive changes of Cl-F-H<sub>2</sub>O during magma ascent towards the surface and can thus be modelled as diffusive reequilibration of the crystal and the melt. We obtained maximum diffusion timescales of <8 hours for the unzoned apatite in sub-plinian deposits, timescales of 20–22 hours for apatite in vulcanian deposits, and 600–1500 hours for those in the lava flow. Thus, the time scales increase with decreasing explosivity of the eruptions, as it could be expected if magma ascent rate played the key role of eruption dynamics. However, the degassing timescales of the effusive phase are significantly longer than the eruption duration itself, which can be explained if the magma started rising in the system 1–3 months prior to the onset of the eruption. The volatile-rich, fast-rising magma that fed the initial sub-plinian phase propagated through, disturbed and remobilized the shallower, more degassed batch of magma, which was erupted during the following effusive phase. Deeper, volatile-poor magma that kept moving up the open conduit, was responsible for the late vulcanian explosions.</p><p>Our results show that apatite is a powerful tool for probing slight changes in magma volatile chemistry and ascent rates that can vary between different phases of the same eruption and produce different eruption styles.</p><p> </p><p>[1] Li and Costa, 2020, GCA [2] Li et al. 2020, EPSL</p>


Sign in / Sign up

Export Citation Format

Share Document