scholarly journals Characterization of a Novel Nanocomposite Film Based on Functionalized Chitosan–Pt–Fe3O4 Hybrid Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1275
Author(s):  
Sangeeta Kumari ◽  
Raj Pal Singh ◽  
Nayaku N. Chavan ◽  
Shivendra V. Sahi ◽  
Nilesh Sharma

The development of organic—inorganic hybrids or nanocomposite films is increasingly becoming attractive in light of their emerging applications. This research focuses on the formation of a unique nanocomposite film with enhanced elasticity suitable for many biomedical applications. The physical property measurement system and transmission electron microscopy were used to analyze Pt–Fe3O4 hybrid nanoparticles. These nanohybrids exhibited magnetic effects. They were further exploited to prepare the nanocomposite films in conjunction with a chitosan-g–glycolic acid organic fraction. The nanocomposite films were then examined using standard techniques: thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and atomic force microscopy. Tensile strength testing demonstrated a significantly greater elastic strength of these nanocomposite films than pure chitosan films. The water absorption behavior of the nanocomposites was evaluated by measuring swelling degree. These nanocomposites were observed to have substantially improved physical properties. Such novel nanocomposites can be extended to various biomedical applications, which include drug delivery and tissue engineering.

2017 ◽  
Vol 07 (04) ◽  
pp. 1750029 ◽  
Author(s):  
Jing Zhang ◽  
Peng Shi ◽  
Mingmin Zhu ◽  
Ming Liu ◽  
Wei Ren ◽  
...  

We report the preparation of epitaxial La[Formula: see text]Sr[Formula: see text]MnO3 thin films grown on (001)-oriented 0.72Pb(Mg[Formula: see text]Nb[Formula: see text]O3-0.28PbTiO3 substrates by the sol–gel technique. The phase structure, magnetic properties and magnetoresistance of the samples are investigated by using high solution X-ray diffraction, atomic force microscopy, physical property measurement system, respectively. The La[Formula: see text]Sr[Formula: see text]MnO3 thin films display a well-defined hysteresis loop and typical ferromagnetism behavior at lower temperature. High magnetoresistance at 5[Formula: see text]T of 42% appears at 227[Formula: see text]K for La[Formula: see text]Sr[Formula: see text]MnO3 thin film.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


2013 ◽  
Vol 634-638 ◽  
pp. 2276-2279 ◽  
Author(s):  
Gang Xu ◽  
Min Zhang ◽  
Ping Ou ◽  
Yi Zhang ◽  
Gao Rong Han

Monodispersed Fe3O4 magnetite nanoparticles were successfully synthesized via a simple solvothermal method, in which Fe(NO3)3•9H2O was used as the starting materials, KOH as the mineralizer, and ethylene glycol (en) as the solvent. X-ray diffraction (XRD) and selected area electron diffraction (SAED) were employed to characterize the phase composition, transmission electron microscope (TEM) to observe the morphology and the particle size, and physical property measurement system (PPMS) to investigate the magnetic property of the synthesized powders, respectively. The synthesized Fe3O4 magnetite nanoparticles are of 50-100nm in size, and of notable ferromagnetic property. The saturation magnetization, remanent magnetization, and coercive field are 68.8emu•g-1, 12.9emu•g-1, 138.5Oe, respectively. Based on the experimental resuts, the formation mechanism and the well monodispersed reason of the solvothersized Fe3O4 nanoparticles are discussed.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

1999 ◽  
Vol 583 ◽  
Author(s):  
Martin Schmidbauer ◽  
Thomas Wiebach ◽  
Helmut Raidt ◽  
Peter Schäfer ◽  
Michael hanke ◽  
...  

AbstractThe strain distribution inside and in the vicinity of coherently strained self-organized islands has been investigated by high-resolution x-ray diffraction (HRXRD). Finite element method (FEM) calculations were carried out in order to calculate the strain field, which was then used to simulate x-ray reciprocal space maps on the basis of kinematical scattering theory. For Si0 75Ge0.25 islands an abrupt increase in the Ge-concentration at about one third of the island height has been found. This behavior can be attributed to different nucleation stages during growth. Highly strained buried CdSe quantum dots (QDs) strongly influence the surrounding ZnSe matrix. From reciprocal space maps and FEM simulations we were able to estimate the shape and size of the islands. The results are in agreement with transmission electron microscopy (TEM) and UHV atomic force microscopy (AFM) data.


1994 ◽  
Vol 340 ◽  
Author(s):  
Art J. Nelson ◽  
M. Bode ◽  
G. Horner ◽  
K. Sinha ◽  
John Moreland

ABSTRACTEpitaxial growth of the ordered vacancy compound (OVC) CuIn3Se5 has been achieved on GaAs (100) by molecular beam epitaxy (MBE) from Cu2Se and In2Se3 sources. Electron probe microanalysis and X-ray diffraction have confirmed the composition for the 1-3-5 OVC phase and that the film is single crystal Culn3Se5 (100). Transmission electron microscopy (TEM) characterization of the material also showed it to be single crystalline. Structural defects in the layer consisted mainly of stacking faults. Photoluminescence (PL) measurements performed at 7.5 K indicate that the bandgap is 1.28 eV. Raman spectra reveal a strong polarized peak at 152 cm−1, which is believed to arise from the totally symmetric vibration of the Se atoms in the lattice. Atomic force microscopy reveals faceting in a preferred (100) orientation.


Nano LIFE ◽  
2014 ◽  
Vol 04 (04) ◽  
pp. 1441014 ◽  
Author(s):  
Qi Liu ◽  
Weiping Hao ◽  
Yongguang Yang ◽  
Aurore Richel ◽  
Canbin Ouyang ◽  
...  

Nanocrystalline celluloses (NCCs) were separated from four commercial microcrystalline celluloses (MCCs) by an acid hydrolysis–sonication treatment. Transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectrum, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were conducted to investigate the NCCs. MCCs with different morphologies and particle sizes showed different aggregation degrees. The aggregation of MCCs followed the order MCC1 > MCC3 > MCC2 > MCC4, which is the same order of the heights of the resulting NCCs. The best uniformity and thermal stability were characterized for NCC3, which was produced by MCC3 with smallest original particle size and good dispersity among the four MCCs. This result suggests that both the original particle size and dispersity of MCCs had significant effects on separated NCCs.


Sign in / Sign up

Export Citation Format

Share Document